LLVM  8.0.1
R600Packetizer.cpp
Go to the documentation of this file.
1 //===----- R600Packetizer.cpp - VLIW packetizer ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This pass implements instructions packetization for R600. It unsets isLast
12 /// bit of instructions inside a bundle and substitutes src register with
13 /// PreviousVector when applicable.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AMDGPU.h"
18 #include "AMDGPUSubtarget.h"
19 #include "R600InstrInfo.h"
25 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/Support/Debug.h"
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "packets"
33 
34 namespace {
35 
36 class R600Packetizer : public MachineFunctionPass {
37 
38 public:
39  static char ID;
40  R600Packetizer() : MachineFunctionPass(ID) {}
41 
42  void getAnalysisUsage(AnalysisUsage &AU) const override {
43  AU.setPreservesCFG();
49  }
50 
51  StringRef getPassName() const override { return "R600 Packetizer"; }
52 
53  bool runOnMachineFunction(MachineFunction &Fn) override;
54 };
55 
56 class R600PacketizerList : public VLIWPacketizerList {
57 private:
58  const R600InstrInfo *TII;
59  const R600RegisterInfo &TRI;
60  bool VLIW5;
61  bool ConsideredInstUsesAlreadyWrittenVectorElement;
62 
63  unsigned getSlot(const MachineInstr &MI) const {
64  return TRI.getHWRegChan(MI.getOperand(0).getReg());
65  }
66 
67  /// \returns register to PV chan mapping for bundle/single instructions that
68  /// immediately precedes I.
70  const {
72  I--;
73  if (!TII->isALUInstr(I->getOpcode()) && !I->isBundle())
74  return Result;
76  if (I->isBundle())
77  BI++;
78  int LastDstChan = -1;
79  do {
80  bool isTrans = false;
81  int BISlot = getSlot(*BI);
82  if (LastDstChan >= BISlot)
83  isTrans = true;
84  LastDstChan = BISlot;
85  if (TII->isPredicated(*BI))
86  continue;
87  int OperandIdx = TII->getOperandIdx(BI->getOpcode(), R600::OpName::write);
88  if (OperandIdx > -1 && BI->getOperand(OperandIdx).getImm() == 0)
89  continue;
90  int DstIdx = TII->getOperandIdx(BI->getOpcode(), R600::OpName::dst);
91  if (DstIdx == -1) {
92  continue;
93  }
94  unsigned Dst = BI->getOperand(DstIdx).getReg();
95  if (isTrans || TII->isTransOnly(*BI)) {
96  Result[Dst] = R600::PS;
97  continue;
98  }
99  if (BI->getOpcode() == R600::DOT4_r600 ||
100  BI->getOpcode() == R600::DOT4_eg) {
101  Result[Dst] = R600::PV_X;
102  continue;
103  }
104  if (Dst == R600::OQAP) {
105  continue;
106  }
107  unsigned PVReg = 0;
108  switch (TRI.getHWRegChan(Dst)) {
109  case 0:
110  PVReg = R600::PV_X;
111  break;
112  case 1:
113  PVReg = R600::PV_Y;
114  break;
115  case 2:
116  PVReg = R600::PV_Z;
117  break;
118  case 3:
119  PVReg = R600::PV_W;
120  break;
121  default:
122  llvm_unreachable("Invalid Chan");
123  }
124  Result[Dst] = PVReg;
125  } while ((++BI)->isBundledWithPred());
126  return Result;
127  }
128 
129  void substitutePV(MachineInstr &MI, const DenseMap<unsigned, unsigned> &PVs)
130  const {
131  unsigned Ops[] = {
132  R600::OpName::src0,
133  R600::OpName::src1,
134  R600::OpName::src2
135  };
136  for (unsigned i = 0; i < 3; i++) {
137  int OperandIdx = TII->getOperandIdx(MI.getOpcode(), Ops[i]);
138  if (OperandIdx < 0)
139  continue;
140  unsigned Src = MI.getOperand(OperandIdx).getReg();
142  if (It != PVs.end())
143  MI.getOperand(OperandIdx).setReg(It->second);
144  }
145  }
146 public:
147  // Ctor.
148  R600PacketizerList(MachineFunction &MF, const R600Subtarget &ST,
149  MachineLoopInfo &MLI)
150  : VLIWPacketizerList(MF, MLI, nullptr),
151  TII(ST.getInstrInfo()),
152  TRI(TII->getRegisterInfo()) {
153  VLIW5 = !ST.hasCaymanISA();
154  }
155 
156  // initPacketizerState - initialize some internal flags.
157  void initPacketizerState() override {
158  ConsideredInstUsesAlreadyWrittenVectorElement = false;
159  }
160 
161  // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
162  bool ignorePseudoInstruction(const MachineInstr &MI,
163  const MachineBasicBlock *MBB) override {
164  return false;
165  }
166 
167  // isSoloInstruction - return true if instruction MI can not be packetized
168  // with any other instruction, which means that MI itself is a packet.
169  bool isSoloInstruction(const MachineInstr &MI) override {
170  if (TII->isVector(MI))
171  return true;
172  if (!TII->isALUInstr(MI.getOpcode()))
173  return true;
174  if (MI.getOpcode() == R600::GROUP_BARRIER)
175  return true;
176  // XXX: This can be removed once the packetizer properly handles all the
177  // LDS instruction group restrictions.
178  return TII->isLDSInstr(MI.getOpcode());
179  }
180 
181  // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
182  // together.
183  bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override {
184  MachineInstr *MII = SUI->getInstr(), *MIJ = SUJ->getInstr();
185  if (getSlot(*MII) == getSlot(*MIJ))
186  ConsideredInstUsesAlreadyWrittenVectorElement = true;
187  // Does MII and MIJ share the same pred_sel ?
188  int OpI = TII->getOperandIdx(MII->getOpcode(), R600::OpName::pred_sel),
189  OpJ = TII->getOperandIdx(MIJ->getOpcode(), R600::OpName::pred_sel);
190  unsigned PredI = (OpI > -1)?MII->getOperand(OpI).getReg():0,
191  PredJ = (OpJ > -1)?MIJ->getOperand(OpJ).getReg():0;
192  if (PredI != PredJ)
193  return false;
194  if (SUJ->isSucc(SUI)) {
195  for (unsigned i = 0, e = SUJ->Succs.size(); i < e; ++i) {
196  const SDep &Dep = SUJ->Succs[i];
197  if (Dep.getSUnit() != SUI)
198  continue;
199  if (Dep.getKind() == SDep::Anti)
200  continue;
201  if (Dep.getKind() == SDep::Output)
202  if (MII->getOperand(0).getReg() != MIJ->getOperand(0).getReg())
203  continue;
204  return false;
205  }
206  }
207 
208  bool ARDef =
209  TII->definesAddressRegister(*MII) || TII->definesAddressRegister(*MIJ);
210  bool ARUse =
211  TII->usesAddressRegister(*MII) || TII->usesAddressRegister(*MIJ);
212 
213  return !ARDef || !ARUse;
214  }
215 
216  // isLegalToPruneDependencies - Is it legal to prune dependece between SUI
217  // and SUJ.
218  bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override {
219  return false;
220  }
221 
222  void setIsLastBit(MachineInstr *MI, unsigned Bit) const {
223  unsigned LastOp = TII->getOperandIdx(MI->getOpcode(), R600::OpName::last);
224  MI->getOperand(LastOp).setImm(Bit);
225  }
226 
227  bool isBundlableWithCurrentPMI(MachineInstr &MI,
229  std::vector<R600InstrInfo::BankSwizzle> &BS,
230  bool &isTransSlot) {
231  isTransSlot = TII->isTransOnly(MI);
232  assert (!isTransSlot || VLIW5);
233 
234  // Is the dst reg sequence legal ?
235  if (!isTransSlot && !CurrentPacketMIs.empty()) {
236  if (getSlot(MI) <= getSlot(*CurrentPacketMIs.back())) {
237  if (ConsideredInstUsesAlreadyWrittenVectorElement &&
238  !TII->isVectorOnly(MI) && VLIW5) {
239  isTransSlot = true;
240  LLVM_DEBUG({
241  dbgs() << "Considering as Trans Inst :";
242  MI.dump();
243  });
244  }
245  else
246  return false;
247  }
248  }
249 
250  // Are the Constants limitations met ?
251  CurrentPacketMIs.push_back(&MI);
252  if (!TII->fitsConstReadLimitations(CurrentPacketMIs)) {
253  LLVM_DEBUG({
254  dbgs() << "Couldn't pack :\n";
255  MI.dump();
256  dbgs() << "with the following packets :\n";
257  for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) {
258  CurrentPacketMIs[i]->dump();
259  dbgs() << "\n";
260  }
261  dbgs() << "because of Consts read limitations\n";
262  });
263  CurrentPacketMIs.pop_back();
264  return false;
265  }
266 
267  // Is there a BankSwizzle set that meet Read Port limitations ?
268  if (!TII->fitsReadPortLimitations(CurrentPacketMIs,
269  PV, BS, isTransSlot)) {
270  LLVM_DEBUG({
271  dbgs() << "Couldn't pack :\n";
272  MI.dump();
273  dbgs() << "with the following packets :\n";
274  for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) {
275  CurrentPacketMIs[i]->dump();
276  dbgs() << "\n";
277  }
278  dbgs() << "because of Read port limitations\n";
279  });
280  CurrentPacketMIs.pop_back();
281  return false;
282  }
283 
284  // We cannot read LDS source registers from the Trans slot.
285  if (isTransSlot && TII->readsLDSSrcReg(MI))
286  return false;
287 
288  CurrentPacketMIs.pop_back();
289  return true;
290  }
291 
292  MachineBasicBlock::iterator addToPacket(MachineInstr &MI) override {
293  MachineBasicBlock::iterator FirstInBundle =
294  CurrentPacketMIs.empty() ? &MI : CurrentPacketMIs.front();
295  const DenseMap<unsigned, unsigned> &PV =
296  getPreviousVector(FirstInBundle);
297  std::vector<R600InstrInfo::BankSwizzle> BS;
298  bool isTransSlot;
299 
300  if (isBundlableWithCurrentPMI(MI, PV, BS, isTransSlot)) {
301  for (unsigned i = 0, e = CurrentPacketMIs.size(); i < e; i++) {
302  MachineInstr *MI = CurrentPacketMIs[i];
303  unsigned Op = TII->getOperandIdx(MI->getOpcode(),
304  R600::OpName::bank_swizzle);
305  MI->getOperand(Op).setImm(BS[i]);
306  }
307  unsigned Op =
308  TII->getOperandIdx(MI.getOpcode(), R600::OpName::bank_swizzle);
309  MI.getOperand(Op).setImm(BS.back());
310  if (!CurrentPacketMIs.empty())
311  setIsLastBit(CurrentPacketMIs.back(), 0);
312  substitutePV(MI, PV);
314  if (isTransSlot) {
315  endPacket(std::next(It)->getParent(), std::next(It));
316  }
317  return It;
318  }
319  endPacket(MI.getParent(), MI);
320  if (TII->isTransOnly(MI))
321  return MI;
323  }
324 };
325 
326 bool R600Packetizer::runOnMachineFunction(MachineFunction &Fn) {
328  const R600InstrInfo *TII = ST.getInstrInfo();
329 
330  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
331 
332  // Instantiate the packetizer.
333  R600PacketizerList Packetizer(Fn, ST, MLI);
334 
335  // DFA state table should not be empty.
336  assert(Packetizer.getResourceTracker() && "Empty DFA table!");
337  assert(Packetizer.getResourceTracker()->getInstrItins());
338 
339  if (Packetizer.getResourceTracker()->getInstrItins()->isEmpty())
340  return false;
341 
342  //
343  // Loop over all basic blocks and remove KILL pseudo-instructions
344  // These instructions confuse the dependence analysis. Consider:
345  // D0 = ... (Insn 0)
346  // R0 = KILL R0, D0 (Insn 1)
347  // R0 = ... (Insn 2)
348  // Here, Insn 1 will result in the dependence graph not emitting an output
349  // dependence between Insn 0 and Insn 2. This can lead to incorrect
350  // packetization
351  //
352  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
353  MBB != MBBe; ++MBB) {
354  MachineBasicBlock::iterator End = MBB->end();
355  MachineBasicBlock::iterator MI = MBB->begin();
356  while (MI != End) {
357  if (MI->isKill() || MI->getOpcode() == R600::IMPLICIT_DEF ||
358  (MI->getOpcode() == R600::CF_ALU && !MI->getOperand(8).getImm())) {
359  MachineBasicBlock::iterator DeleteMI = MI;
360  ++MI;
361  MBB->erase(DeleteMI);
362  End = MBB->end();
363  continue;
364  }
365  ++MI;
366  }
367  }
368 
369  // Loop over all of the basic blocks.
370  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
371  MBB != MBBe; ++MBB) {
372  // Find scheduling regions and schedule / packetize each region.
373  unsigned RemainingCount = MBB->size();
374  for(MachineBasicBlock::iterator RegionEnd = MBB->end();
375  RegionEnd != MBB->begin();) {
376  // The next region starts above the previous region. Look backward in the
377  // instruction stream until we find the nearest boundary.
378  MachineBasicBlock::iterator I = RegionEnd;
379  for(;I != MBB->begin(); --I, --RemainingCount) {
380  if (TII->isSchedulingBoundary(*std::prev(I), &*MBB, Fn))
381  break;
382  }
383  I = MBB->begin();
384 
385  // Skip empty scheduling regions.
386  if (I == RegionEnd) {
387  RegionEnd = std::prev(RegionEnd);
388  --RemainingCount;
389  continue;
390  }
391  // Skip regions with one instruction.
392  if (I == std::prev(RegionEnd)) {
393  RegionEnd = std::prev(RegionEnd);
394  continue;
395  }
396 
397  Packetizer.PacketizeMIs(&*MBB, &*I, RegionEnd);
398  RegionEnd = I;
399  }
400  }
401 
402  return true;
403 
404 }
405 
406 } // end anonymous namespace
407 
408 INITIALIZE_PASS_BEGIN(R600Packetizer, DEBUG_TYPE,
409  "R600 Packetizer", false, false)
411  "R600 Packetizer", false, false)
412 
413 char R600Packetizer::ID = 0;
414 
415 char &llvm::R600PacketizerID = R600Packetizer::ID;
416 
418  return new R600Packetizer();
419 }
bool usesAddressRegister(MachineInstr &MI) const
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
AMDGPU specific subclass of TargetSubtarget.
This class represents lattice values for constants.
Definition: AllocatorList.h:24
Interface definition for R600InstrInfo.
unsigned getReg() const
getReg - Returns the register number.
bool isPredicated(const MachineInstr &MI) const override
unsigned const TargetRegisterInfo * TRI
A register anti-dependence (aka WAR).
Definition: ScheduleDAG.h:55
AnalysisUsage & addRequired()
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
const HexagonInstrInfo * TII
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:409
A register output-dependence (aka WAW).
Definition: ScheduleDAG.h:56
virtual MachineBasicBlock::iterator addToPacket(MachineInstr &MI)
char & R600PacketizerID
SUnit * getSUnit() const
Definition: ScheduleDAG.h:484
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:176
R600 Packetizer
Scheduling dependency.
Definition: ScheduleDAG.h:50
MachineInstr * getInstr() const
Returns the representative MachineInstr for this SUnit.
Definition: ScheduleDAG.h:377
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
Represent the analysis usage information of a pass.
const R600InstrInfo * getInstrInfo() const override
bool isLDSInstr(unsigned Opcode) const
void setImm(int64_t immVal)
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
int getOperandIdx(const MachineInstr &MI, unsigned Op) const
Get the index of Op in the MachineInstr.
const R600RegisterInfo & getRegisterInfo() const
Definition: R600InstrInfo.h:72
bool isVectorOnly(unsigned Opcode) const
static void write(bool isBE, void *P, T V)
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
#define DEBUG_TYPE
bool fitsConstReadLimitations(const std::vector< MachineInstr *> &) const
An instruction group can only access 2 channel pair (either [XY] or [ZW]) from KCache bank on R700+...
bool isTransOnly(unsigned Opcode) const
INITIALIZE_PASS_BEGIN(R600Packetizer, DEBUG_TYPE, "R600 Packetizer", false, false) INITIALIZE_PASS_END(R600Packetizer
bool isVector(const MachineInstr &MI) const
Vector instructions are instructions that must fill all instruction slots within an instruction group...
Iterator for intrusive lists based on ilist_node.
bool hasCaymanISA() const
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:286
unsigned getHWRegChan(unsigned reg) const
get the HW encoding for a register&#39;s channel.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
bool isALUInstr(unsigned Opcode) const
bool readsLDSSrcReg(const MachineInstr &MI) const
FunctionPass * createR600Packetizer()
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:254
Provides AMDGPU specific target descriptions.
Representation of each machine instruction.
Definition: MachineInstr.h:64
bool fitsReadPortLimitations(const std::vector< MachineInstr *> &MIs, const DenseMap< unsigned, unsigned > &PV, std::vector< BankSwizzle > &BS, bool isLastAluTrans) const
Given the order VEC_012 < VEC_021 < VEC_120 < VEC_102 < VEC_201 < VEC_210 returns true and the first ...
void setReg(unsigned Reg)
Change the register this operand corresponds to.
#define I(x, y, z)
Definition: MD5.cpp:58
iterator end()
Definition: DenseMap.h:109
Kind getKind() const
Returns an enum value representing the kind of the dependence.
Definition: ScheduleDAG.h:490
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
SmallVector< SDep, 4 > Succs
All sunit successors.
Definition: ScheduleDAG.h:261
static const Function * getParent(const Value *V)
IRTranslator LLVM IR MI
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
#define LLVM_DEBUG(X)
Definition: Debug.h:123
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:414
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
bool isSucc(const SUnit *N) const
Tests if node N is a successor of this node.
Definition: ScheduleDAG.h:443
bool definesAddressRegister(MachineInstr &MI) const
Scheduling unit. This is a node in the scheduling DAG.
Definition: ScheduleDAG.h:246