LLVM  8.0.1
MemCpyOptimizer.cpp
Go to the documentation of this file.
1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs various transformations related to eliminating memcpy
11 // calls, or transforming sets of stores into memset's.
12 //
13 //===----------------------------------------------------------------------===//
14 
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "memcpyopt"
67 
68 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
69 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
70 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
71 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
72 
73 static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
74  bool &VariableIdxFound,
75  const DataLayout &DL) {
76  // Skip over the first indices.
78  for (unsigned i = 1; i != Idx; ++i, ++GTI)
79  /*skip along*/;
80 
81  // Compute the offset implied by the rest of the indices.
82  int64_t Offset = 0;
83  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
84  ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
85  if (!OpC)
86  return VariableIdxFound = true;
87  if (OpC->isZero()) continue; // No offset.
88 
89  // Handle struct indices, which add their field offset to the pointer.
90  if (StructType *STy = GTI.getStructTypeOrNull()) {
91  Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
92  continue;
93  }
94 
95  // Otherwise, we have a sequential type like an array or vector. Multiply
96  // the index by the ElementSize.
97  uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
98  Offset += Size*OpC->getSExtValue();
99  }
100 
101  return Offset;
102 }
103 
104 /// Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and
105 /// return that constant offset. For example, Ptr1 might be &A[42], and Ptr2
106 /// might be &A[40]. In this case offset would be -8.
107 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
108  const DataLayout &DL) {
109  Ptr1 = Ptr1->stripPointerCasts();
110  Ptr2 = Ptr2->stripPointerCasts();
111 
112  // Handle the trivial case first.
113  if (Ptr1 == Ptr2) {
114  Offset = 0;
115  return true;
116  }
117 
118  GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
119  GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
120 
121  bool VariableIdxFound = false;
122 
123  // If one pointer is a GEP and the other isn't, then see if the GEP is a
124  // constant offset from the base, as in "P" and "gep P, 1".
125  if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
126  Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL);
127  return !VariableIdxFound;
128  }
129 
130  if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
131  Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL);
132  return !VariableIdxFound;
133  }
134 
135  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
136  // base. After that base, they may have some number of common (and
137  // potentially variable) indices. After that they handle some constant
138  // offset, which determines their offset from each other. At this point, we
139  // handle no other case.
140  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
141  return false;
142 
143  // Skip any common indices and track the GEP types.
144  unsigned Idx = 1;
145  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
146  if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
147  break;
148 
149  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL);
150  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL);
151  if (VariableIdxFound) return false;
152 
153  Offset = Offset2-Offset1;
154  return true;
155 }
156 
157 namespace {
158 
159 /// Represents a range of memset'd bytes with the ByteVal value.
160 /// This allows us to analyze stores like:
161 /// store 0 -> P+1
162 /// store 0 -> P+0
163 /// store 0 -> P+3
164 /// store 0 -> P+2
165 /// which sometimes happens with stores to arrays of structs etc. When we see
166 /// the first store, we make a range [1, 2). The second store extends the range
167 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
168 /// two ranges into [0, 3) which is memset'able.
169 struct MemsetRange {
170  // Start/End - A semi range that describes the span that this range covers.
171  // The range is closed at the start and open at the end: [Start, End).
172  int64_t Start, End;
173 
174  /// StartPtr - The getelementptr instruction that points to the start of the
175  /// range.
176  Value *StartPtr;
177 
178  /// Alignment - The known alignment of the first store.
179  unsigned Alignment;
180 
181  /// TheStores - The actual stores that make up this range.
183 
184  bool isProfitableToUseMemset(const DataLayout &DL) const;
185 };
186 
187 } // end anonymous namespace
188 
189 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
190  // If we found more than 4 stores to merge or 16 bytes, use memset.
191  if (TheStores.size() >= 4 || End-Start >= 16) return true;
192 
193  // If there is nothing to merge, don't do anything.
194  if (TheStores.size() < 2) return false;
195 
196  // If any of the stores are a memset, then it is always good to extend the
197  // memset.
198  for (Instruction *SI : TheStores)
199  if (!isa<StoreInst>(SI))
200  return true;
201 
202  // Assume that the code generator is capable of merging pairs of stores
203  // together if it wants to.
204  if (TheStores.size() == 2) return false;
205 
206  // If we have fewer than 8 stores, it can still be worthwhile to do this.
207  // For example, merging 4 i8 stores into an i32 store is useful almost always.
208  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
209  // memset will be split into 2 32-bit stores anyway) and doing so can
210  // pessimize the llvm optimizer.
211  //
212  // Since we don't have perfect knowledge here, make some assumptions: assume
213  // the maximum GPR width is the same size as the largest legal integer
214  // size. If so, check to see whether we will end up actually reducing the
215  // number of stores used.
216  unsigned Bytes = unsigned(End-Start);
217  unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
218  if (MaxIntSize == 0)
219  MaxIntSize = 1;
220  unsigned NumPointerStores = Bytes / MaxIntSize;
221 
222  // Assume the remaining bytes if any are done a byte at a time.
223  unsigned NumByteStores = Bytes % MaxIntSize;
224 
225  // If we will reduce the # stores (according to this heuristic), do the
226  // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
227  // etc.
228  return TheStores.size() > NumPointerStores+NumByteStores;
229 }
230 
231 namespace {
232 
233 class MemsetRanges {
234  using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
235 
236  /// A sorted list of the memset ranges.
238 
239  const DataLayout &DL;
240 
241 public:
242  MemsetRanges(const DataLayout &DL) : DL(DL) {}
243 
244  using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
245 
246  const_iterator begin() const { return Ranges.begin(); }
247  const_iterator end() const { return Ranges.end(); }
248  bool empty() const { return Ranges.empty(); }
249 
250  void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
251  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
252  addStore(OffsetFromFirst, SI);
253  else
254  addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
255  }
256 
257  void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
258  int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
259 
260  addRange(OffsetFromFirst, StoreSize,
261  SI->getPointerOperand(), SI->getAlignment(), SI);
262  }
263 
264  void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
265  int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
266  addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
267  }
268 
269  void addRange(int64_t Start, int64_t Size, Value *Ptr,
270  unsigned Alignment, Instruction *Inst);
271 };
272 
273 } // end anonymous namespace
274 
275 /// Add a new store to the MemsetRanges data structure. This adds a
276 /// new range for the specified store at the specified offset, merging into
277 /// existing ranges as appropriate.
278 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
279  unsigned Alignment, Instruction *Inst) {
280  int64_t End = Start+Size;
281 
282  range_iterator I = std::lower_bound(Ranges.begin(), Ranges.end(), Start,
283  [](const MemsetRange &LHS, int64_t RHS) { return LHS.End < RHS; });
284 
285  // We now know that I == E, in which case we didn't find anything to merge
286  // with, or that Start <= I->End. If End < I->Start or I == E, then we need
287  // to insert a new range. Handle this now.
288  if (I == Ranges.end() || End < I->Start) {
289  MemsetRange &R = *Ranges.insert(I, MemsetRange());
290  R.Start = Start;
291  R.End = End;
292  R.StartPtr = Ptr;
293  R.Alignment = Alignment;
294  R.TheStores.push_back(Inst);
295  return;
296  }
297 
298  // This store overlaps with I, add it.
299  I->TheStores.push_back(Inst);
300 
301  // At this point, we may have an interval that completely contains our store.
302  // If so, just add it to the interval and return.
303  if (I->Start <= Start && I->End >= End)
304  return;
305 
306  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
307  // but is not entirely contained within the range.
308 
309  // See if the range extends the start of the range. In this case, it couldn't
310  // possibly cause it to join the prior range, because otherwise we would have
311  // stopped on *it*.
312  if (Start < I->Start) {
313  I->Start = Start;
314  I->StartPtr = Ptr;
315  I->Alignment = Alignment;
316  }
317 
318  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
319  // is in or right at the end of I), and that End >= I->Start. Extend I out to
320  // End.
321  if (End > I->End) {
322  I->End = End;
323  range_iterator NextI = I;
324  while (++NextI != Ranges.end() && End >= NextI->Start) {
325  // Merge the range in.
326  I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
327  if (NextI->End > I->End)
328  I->End = NextI->End;
329  Ranges.erase(NextI);
330  NextI = I;
331  }
332  }
333 }
334 
335 //===----------------------------------------------------------------------===//
336 // MemCpyOptLegacyPass Pass
337 //===----------------------------------------------------------------------===//
338 
339 namespace {
340 
341 class MemCpyOptLegacyPass : public FunctionPass {
342  MemCpyOptPass Impl;
343 
344 public:
345  static char ID; // Pass identification, replacement for typeid
346 
347  MemCpyOptLegacyPass() : FunctionPass(ID) {
349  }
350 
351  bool runOnFunction(Function &F) override;
352 
353 private:
354  // This transformation requires dominator postdominator info
355  void getAnalysisUsage(AnalysisUsage &AU) const override {
356  AU.setPreservesCFG();
364  }
365 };
366 
367 } // end anonymous namespace
368 
369 char MemCpyOptLegacyPass::ID = 0;
370 
371 /// The public interface to this file...
372 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
373 
374 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
375  false, false)
382 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
383  false, false)
384 
385 /// When scanning forward over instructions, we look for some other patterns to
386 /// fold away. In particular, this looks for stores to neighboring locations of
387 /// memory. If it sees enough consecutive ones, it attempts to merge them
388 /// together into a memcpy/memset.
389 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
390  Value *StartPtr,
391  Value *ByteVal) {
392  const DataLayout &DL = StartInst->getModule()->getDataLayout();
393 
394  // Okay, so we now have a single store that can be splatable. Scan to find
395  // all subsequent stores of the same value to offset from the same pointer.
396  // Join these together into ranges, so we can decide whether contiguous blocks
397  // are stored.
398  MemsetRanges Ranges(DL);
399 
400  BasicBlock::iterator BI(StartInst);
401  for (++BI; !BI->isTerminator(); ++BI) {
402  if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
403  // If the instruction is readnone, ignore it, otherwise bail out. We
404  // don't even allow readonly here because we don't want something like:
405  // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
406  if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
407  break;
408  continue;
409  }
410 
411  if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
412  // If this is a store, see if we can merge it in.
413  if (!NextStore->isSimple()) break;
414 
415  // Check to see if this stored value is of the same byte-splattable value.
416  Value *StoredByte = isBytewiseValue(NextStore->getOperand(0));
417  if (isa<UndefValue>(ByteVal) && StoredByte)
418  ByteVal = StoredByte;
419  if (ByteVal != StoredByte)
420  break;
421 
422  // Check to see if this store is to a constant offset from the start ptr.
423  int64_t Offset;
424  if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset,
425  DL))
426  break;
427 
428  Ranges.addStore(Offset, NextStore);
429  } else {
430  MemSetInst *MSI = cast<MemSetInst>(BI);
431 
432  if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
433  !isa<ConstantInt>(MSI->getLength()))
434  break;
435 
436  // Check to see if this store is to a constant offset from the start ptr.
437  int64_t Offset;
438  if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL))
439  break;
440 
441  Ranges.addMemSet(Offset, MSI);
442  }
443  }
444 
445  // If we have no ranges, then we just had a single store with nothing that
446  // could be merged in. This is a very common case of course.
447  if (Ranges.empty())
448  return nullptr;
449 
450  // If we had at least one store that could be merged in, add the starting
451  // store as well. We try to avoid this unless there is at least something
452  // interesting as a small compile-time optimization.
453  Ranges.addInst(0, StartInst);
454 
455  // If we create any memsets, we put it right before the first instruction that
456  // isn't part of the memset block. This ensure that the memset is dominated
457  // by any addressing instruction needed by the start of the block.
458  IRBuilder<> Builder(&*BI);
459 
460  // Now that we have full information about ranges, loop over the ranges and
461  // emit memset's for anything big enough to be worthwhile.
462  Instruction *AMemSet = nullptr;
463  for (const MemsetRange &Range : Ranges) {
464  if (Range.TheStores.size() == 1) continue;
465 
466  // If it is profitable to lower this range to memset, do so now.
467  if (!Range.isProfitableToUseMemset(DL))
468  continue;
469 
470  // Otherwise, we do want to transform this! Create a new memset.
471  // Get the starting pointer of the block.
472  StartPtr = Range.StartPtr;
473 
474  // Determine alignment
475  unsigned Alignment = Range.Alignment;
476  if (Alignment == 0) {
477  Type *EltType =
478  cast<PointerType>(StartPtr->getType())->getElementType();
479  Alignment = DL.getABITypeAlignment(EltType);
480  }
481 
482  AMemSet =
483  Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
484 
485  LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
486  : Range.TheStores) dbgs()
487  << *SI << '\n';
488  dbgs() << "With: " << *AMemSet << '\n');
489 
490  if (!Range.TheStores.empty())
491  AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
492 
493  // Zap all the stores.
494  for (Instruction *SI : Range.TheStores) {
495  MD->removeInstruction(SI);
496  SI->eraseFromParent();
497  }
498  ++NumMemSetInfer;
499  }
500 
501  return AMemSet;
502 }
503 
504 static unsigned findStoreAlignment(const DataLayout &DL, const StoreInst *SI) {
505  unsigned StoreAlign = SI->getAlignment();
506  if (!StoreAlign)
507  StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
508  return StoreAlign;
509 }
510 
511 static unsigned findLoadAlignment(const DataLayout &DL, const LoadInst *LI) {
512  unsigned LoadAlign = LI->getAlignment();
513  if (!LoadAlign)
514  LoadAlign = DL.getABITypeAlignment(LI->getType());
515  return LoadAlign;
516 }
517 
518 static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI,
519  const LoadInst *LI) {
520  unsigned StoreAlign = findStoreAlignment(DL, SI);
521  unsigned LoadAlign = findLoadAlignment(DL, LI);
522  return MinAlign(StoreAlign, LoadAlign);
523 }
524 
525 // This method try to lift a store instruction before position P.
526 // It will lift the store and its argument + that anything that
527 // may alias with these.
528 // The method returns true if it was successful.
530  const LoadInst *LI) {
531  // If the store alias this position, early bail out.
532  MemoryLocation StoreLoc = MemoryLocation::get(SI);
533  if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc)))
534  return false;
535 
536  // Keep track of the arguments of all instruction we plan to lift
537  // so we can make sure to lift them as well if appropriate.
539  if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
540  if (Ptr->getParent() == SI->getParent())
541  Args.insert(Ptr);
542 
543  // Instruction to lift before P.
545 
546  // Memory locations of lifted instructions.
547  SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
548 
549  // Lifted calls.
551 
552  const MemoryLocation LoadLoc = MemoryLocation::get(LI);
553 
554  for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
555  auto *C = &*I;
556 
558 
559  bool NeedLift = false;
560  if (Args.erase(C))
561  NeedLift = true;
562  else if (MayAlias) {
563  NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) {
564  return isModOrRefSet(AA.getModRefInfo(C, ML));
565  });
566 
567  if (!NeedLift)
568  NeedLift = llvm::any_of(Calls, [C, &AA](const CallBase *Call) {
569  return isModOrRefSet(AA.getModRefInfo(C, Call));
570  });
571  }
572 
573  if (!NeedLift)
574  continue;
575 
576  if (MayAlias) {
577  // Since LI is implicitly moved downwards past the lifted instructions,
578  // none of them may modify its source.
579  if (isModSet(AA.getModRefInfo(C, LoadLoc)))
580  return false;
581  else if (const auto *Call = dyn_cast<CallBase>(C)) {
582  // If we can't lift this before P, it's game over.
583  if (isModOrRefSet(AA.getModRefInfo(P, Call)))
584  return false;
585 
586  Calls.push_back(Call);
587  } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
588  // If we can't lift this before P, it's game over.
589  auto ML = MemoryLocation::get(C);
590  if (isModOrRefSet(AA.getModRefInfo(P, ML)))
591  return false;
592 
593  MemLocs.push_back(ML);
594  } else
595  // We don't know how to lift this instruction.
596  return false;
597  }
598 
599  ToLift.push_back(C);
600  for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
601  if (auto *A = dyn_cast<Instruction>(C->getOperand(k)))
602  if (A->getParent() == SI->getParent())
603  Args.insert(A);
604  }
605 
606  // We made it, we need to lift
607  for (auto *I : llvm::reverse(ToLift)) {
608  LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
609  I->moveBefore(P);
610  }
611 
612  return true;
613 }
614 
615 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
616  if (!SI->isSimple()) return false;
617 
618  // Avoid merging nontemporal stores since the resulting
619  // memcpy/memset would not be able to preserve the nontemporal hint.
620  // In theory we could teach how to propagate the !nontemporal metadata to
621  // memset calls. However, that change would force the backend to
622  // conservatively expand !nontemporal memset calls back to sequences of
623  // store instructions (effectively undoing the merging).
625  return false;
626 
627  const DataLayout &DL = SI->getModule()->getDataLayout();
628 
629  // Load to store forwarding can be interpreted as memcpy.
630  if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
631  if (LI->isSimple() && LI->hasOneUse() &&
632  LI->getParent() == SI->getParent()) {
633 
634  auto *T = LI->getType();
635  if (T->isAggregateType()) {
636  AliasAnalysis &AA = LookupAliasAnalysis();
637  MemoryLocation LoadLoc = MemoryLocation::get(LI);
638 
639  // We use alias analysis to check if an instruction may store to
640  // the memory we load from in between the load and the store. If
641  // such an instruction is found, we try to promote there instead
642  // of at the store position.
643  Instruction *P = SI;
644  for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
645  if (isModSet(AA.getModRefInfo(&I, LoadLoc))) {
646  P = &I;
647  break;
648  }
649  }
650 
651  // We found an instruction that may write to the loaded memory.
652  // We can try to promote at this position instead of the store
653  // position if nothing alias the store memory after this and the store
654  // destination is not in the range.
655  if (P && P != SI) {
656  if (!moveUp(AA, SI, P, LI))
657  P = nullptr;
658  }
659 
660  // If a valid insertion position is found, then we can promote
661  // the load/store pair to a memcpy.
662  if (P) {
663  // If we load from memory that may alias the memory we store to,
664  // memmove must be used to preserve semantic. If not, memcpy can
665  // be used.
666  bool UseMemMove = false;
667  if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc))
668  UseMemMove = true;
669 
670  uint64_t Size = DL.getTypeStoreSize(T);
671 
672  IRBuilder<> Builder(P);
673  Instruction *M;
674  if (UseMemMove)
675  M = Builder.CreateMemMove(
676  SI->getPointerOperand(), findStoreAlignment(DL, SI),
677  LI->getPointerOperand(), findLoadAlignment(DL, LI), Size);
678  else
679  M = Builder.CreateMemCpy(
680  SI->getPointerOperand(), findStoreAlignment(DL, SI),
681  LI->getPointerOperand(), findLoadAlignment(DL, LI), Size);
682 
683  LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
684  << *M << "\n");
685 
686  MD->removeInstruction(SI);
687  SI->eraseFromParent();
688  MD->removeInstruction(LI);
689  LI->eraseFromParent();
690  ++NumMemCpyInstr;
691 
692  // Make sure we do not invalidate the iterator.
693  BBI = M->getIterator();
694  return true;
695  }
696  }
697 
698  // Detect cases where we're performing call slot forwarding, but
699  // happen to be using a load-store pair to implement it, rather than
700  // a memcpy.
701  MemDepResult ldep = MD->getDependency(LI);
702  CallInst *C = nullptr;
703  if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
704  C = dyn_cast<CallInst>(ldep.getInst());
705 
706  if (C) {
707  // Check that nothing touches the dest of the "copy" between
708  // the call and the store.
709  Value *CpyDest = SI->getPointerOperand()->stripPointerCasts();
710  bool CpyDestIsLocal = isa<AllocaInst>(CpyDest);
711  AliasAnalysis &AA = LookupAliasAnalysis();
712  MemoryLocation StoreLoc = MemoryLocation::get(SI);
713  for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
714  I != E; --I) {
715  if (isModOrRefSet(AA.getModRefInfo(&*I, StoreLoc))) {
716  C = nullptr;
717  break;
718  }
719  // The store to dest may never happen if an exception can be thrown
720  // between the load and the store.
721  if (I->mayThrow() && !CpyDestIsLocal) {
722  C = nullptr;
723  break;
724  }
725  }
726  }
727 
728  if (C) {
729  bool changed = performCallSlotOptzn(
731  LI->getPointerOperand()->stripPointerCasts(),
732  DL.getTypeStoreSize(SI->getOperand(0)->getType()),
733  findCommonAlignment(DL, SI, LI), C);
734  if (changed) {
735  MD->removeInstruction(SI);
736  SI->eraseFromParent();
737  MD->removeInstruction(LI);
738  LI->eraseFromParent();
739  ++NumMemCpyInstr;
740  return true;
741  }
742  }
743  }
744  }
745 
746  // There are two cases that are interesting for this code to handle: memcpy
747  // and memset. Right now we only handle memset.
748 
749  // Ensure that the value being stored is something that can be memset'able a
750  // byte at a time like "0" or "-1" or any width, as well as things like
751  // 0xA0A0A0A0 and 0.0.
752  auto *V = SI->getOperand(0);
753  if (Value *ByteVal = isBytewiseValue(V)) {
754  if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
755  ByteVal)) {
756  BBI = I->getIterator(); // Don't invalidate iterator.
757  return true;
758  }
759 
760  // If we have an aggregate, we try to promote it to memset regardless
761  // of opportunity for merging as it can expose optimization opportunities
762  // in subsequent passes.
763  auto *T = V->getType();
764  if (T->isAggregateType()) {
765  uint64_t Size = DL.getTypeStoreSize(T);
766  unsigned Align = SI->getAlignment();
767  if (!Align)
768  Align = DL.getABITypeAlignment(T);
769  IRBuilder<> Builder(SI);
770  auto *M =
771  Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, Align);
772 
773  LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
774 
775  MD->removeInstruction(SI);
776  SI->eraseFromParent();
777  NumMemSetInfer++;
778 
779  // Make sure we do not invalidate the iterator.
780  BBI = M->getIterator();
781  return true;
782  }
783  }
784 
785  return false;
786 }
787 
788 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
789  // See if there is another memset or store neighboring this memset which
790  // allows us to widen out the memset to do a single larger store.
791  if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
792  if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
793  MSI->getValue())) {
794  BBI = I->getIterator(); // Don't invalidate iterator.
795  return true;
796  }
797  return false;
798 }
799 
800 /// Takes a memcpy and a call that it depends on,
801 /// and checks for the possibility of a call slot optimization by having
802 /// the call write its result directly into the destination of the memcpy.
803 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
804  Value *cpySrc, uint64_t cpyLen,
805  unsigned cpyAlign, CallInst *C) {
806  // The general transformation to keep in mind is
807  //
808  // call @func(..., src, ...)
809  // memcpy(dest, src, ...)
810  //
811  // ->
812  //
813  // memcpy(dest, src, ...)
814  // call @func(..., dest, ...)
815  //
816  // Since moving the memcpy is technically awkward, we additionally check that
817  // src only holds uninitialized values at the moment of the call, meaning that
818  // the memcpy can be discarded rather than moved.
819 
820  // Lifetime marks shouldn't be operated on.
821  if (Function *F = C->getCalledFunction())
822  if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
823  return false;
824 
825  // Deliberately get the source and destination with bitcasts stripped away,
826  // because we'll need to do type comparisons based on the underlying type.
827  CallSite CS(C);
828 
829  // Require that src be an alloca. This simplifies the reasoning considerably.
830  AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
831  if (!srcAlloca)
832  return false;
833 
834  ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
835  if (!srcArraySize)
836  return false;
837 
838  const DataLayout &DL = cpy->getModule()->getDataLayout();
839  uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
840  srcArraySize->getZExtValue();
841 
842  if (cpyLen < srcSize)
843  return false;
844 
845  // Check that accessing the first srcSize bytes of dest will not cause a
846  // trap. Otherwise the transform is invalid since it might cause a trap
847  // to occur earlier than it otherwise would.
848  if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
849  // The destination is an alloca. Check it is larger than srcSize.
850  ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
851  if (!destArraySize)
852  return false;
853 
854  uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
855  destArraySize->getZExtValue();
856 
857  if (destSize < srcSize)
858  return false;
859  } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
860  // The store to dest may never happen if the call can throw.
861  if (C->mayThrow())
862  return false;
863 
864  if (A->getDereferenceableBytes() < srcSize) {
865  // If the destination is an sret parameter then only accesses that are
866  // outside of the returned struct type can trap.
867  if (!A->hasStructRetAttr())
868  return false;
869 
870  Type *StructTy = cast<PointerType>(A->getType())->getElementType();
871  if (!StructTy->isSized()) {
872  // The call may never return and hence the copy-instruction may never
873  // be executed, and therefore it's not safe to say "the destination
874  // has at least <cpyLen> bytes, as implied by the copy-instruction",
875  return false;
876  }
877 
878  uint64_t destSize = DL.getTypeAllocSize(StructTy);
879  if (destSize < srcSize)
880  return false;
881  }
882  } else {
883  return false;
884  }
885 
886  // Check that dest points to memory that is at least as aligned as src.
887  unsigned srcAlign = srcAlloca->getAlignment();
888  if (!srcAlign)
889  srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
890  bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
891  // If dest is not aligned enough and we can't increase its alignment then
892  // bail out.
893  if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
894  return false;
895 
896  // Check that src is not accessed except via the call and the memcpy. This
897  // guarantees that it holds only undefined values when passed in (so the final
898  // memcpy can be dropped), that it is not read or written between the call and
899  // the memcpy, and that writing beyond the end of it is undefined.
900  SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
901  srcAlloca->user_end());
902  while (!srcUseList.empty()) {
903  User *U = srcUseList.pop_back_val();
904 
905  if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
906  for (User *UU : U->users())
907  srcUseList.push_back(UU);
908  continue;
909  }
910  if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
911  if (!G->hasAllZeroIndices())
912  return false;
913 
914  for (User *UU : U->users())
915  srcUseList.push_back(UU);
916  continue;
917  }
918  if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
919  if (IT->isLifetimeStartOrEnd())
920  continue;
921 
922  if (U != C && U != cpy)
923  return false;
924  }
925 
926  // Check that src isn't captured by the called function since the
927  // transformation can cause aliasing issues in that case.
928  for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
929  if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
930  return false;
931 
932  // Since we're changing the parameter to the callsite, we need to make sure
933  // that what would be the new parameter dominates the callsite.
934  DominatorTree &DT = LookupDomTree();
935  if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
936  if (!DT.dominates(cpyDestInst, C))
937  return false;
938 
939  // In addition to knowing that the call does not access src in some
940  // unexpected manner, for example via a global, which we deduce from
941  // the use analysis, we also need to know that it does not sneakily
942  // access dest. We rely on AA to figure this out for us.
943  AliasAnalysis &AA = LookupAliasAnalysis();
944  ModRefInfo MR = AA.getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
945  // If necessary, perform additional analysis.
946  if (isModOrRefSet(MR))
947  MR = AA.callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), &DT);
948  if (isModOrRefSet(MR))
949  return false;
950 
951  // We can't create address space casts here because we don't know if they're
952  // safe for the target.
953  if (cpySrc->getType()->getPointerAddressSpace() !=
954  cpyDest->getType()->getPointerAddressSpace())
955  return false;
956  for (unsigned i = 0; i < CS.arg_size(); ++i)
957  if (CS.getArgument(i)->stripPointerCasts() == cpySrc &&
958  cpySrc->getType()->getPointerAddressSpace() !=
960  return false;
961 
962  // All the checks have passed, so do the transformation.
963  bool changedArgument = false;
964  for (unsigned i = 0; i < CS.arg_size(); ++i)
965  if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
966  Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest
967  : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
968  cpyDest->getName(), C);
969  changedArgument = true;
970  if (CS.getArgument(i)->getType() == Dest->getType())
971  CS.setArgument(i, Dest);
972  else
974  CS.getArgument(i)->getType(), Dest->getName(), C));
975  }
976 
977  if (!changedArgument)
978  return false;
979 
980  // If the destination wasn't sufficiently aligned then increase its alignment.
981  if (!isDestSufficientlyAligned) {
982  assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
983  cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
984  }
985 
986  // Drop any cached information about the call, because we may have changed
987  // its dependence information by changing its parameter.
988  MD->removeInstruction(C);
989 
990  // Update AA metadata
991  // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
992  // handled here, but combineMetadata doesn't support them yet
993  unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
997  combineMetadata(C, cpy, KnownIDs, true);
998 
999  // Remove the memcpy.
1000  MD->removeInstruction(cpy);
1001  ++NumMemCpyInstr;
1002 
1003  return true;
1004 }
1005 
1006 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
1007 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
1008 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
1009  MemCpyInst *MDep) {
1010  // We can only transforms memcpy's where the dest of one is the source of the
1011  // other.
1012  if (M->getSource() != MDep->getDest() || MDep->isVolatile())
1013  return false;
1014 
1015  // If dep instruction is reading from our current input, then it is a noop
1016  // transfer and substituting the input won't change this instruction. Just
1017  // ignore the input and let someone else zap MDep. This handles cases like:
1018  // memcpy(a <- a)
1019  // memcpy(b <- a)
1020  if (M->getSource() == MDep->getSource())
1021  return false;
1022 
1023  // Second, the length of the memcpy's must be the same, or the preceding one
1024  // must be larger than the following one.
1025  ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
1026  ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
1027  if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
1028  return false;
1029 
1030  AliasAnalysis &AA = LookupAliasAnalysis();
1031 
1032  // Verify that the copied-from memory doesn't change in between the two
1033  // transfers. For example, in:
1034  // memcpy(a <- b)
1035  // *b = 42;
1036  // memcpy(c <- a)
1037  // It would be invalid to transform the second memcpy into memcpy(c <- b).
1038  //
1039  // TODO: If the code between M and MDep is transparent to the destination "c",
1040  // then we could still perform the xform by moving M up to the first memcpy.
1041  //
1042  // NOTE: This is conservative, it will stop on any read from the source loc,
1043  // not just the defining memcpy.
1044  MemDepResult SourceDep =
1045  MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
1046  M->getIterator(), M->getParent());
1047  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1048  return false;
1049 
1050  // If the dest of the second might alias the source of the first, then the
1051  // source and dest might overlap. We still want to eliminate the intermediate
1052  // value, but we have to generate a memmove instead of memcpy.
1053  bool UseMemMove = false;
1056  UseMemMove = true;
1057 
1058  // If all checks passed, then we can transform M.
1059  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1060  << *MDep << '\n' << *M << '\n');
1061 
1062  // TODO: Is this worth it if we're creating a less aligned memcpy? For
1063  // example we could be moving from movaps -> movq on x86.
1064  IRBuilder<> Builder(M);
1065  if (UseMemMove)
1066  Builder.CreateMemMove(M->getRawDest(), M->getDestAlignment(),
1067  MDep->getRawSource(), MDep->getSourceAlignment(),
1068  M->getLength(), M->isVolatile());
1069  else
1070  Builder.CreateMemCpy(M->getRawDest(), M->getDestAlignment(),
1071  MDep->getRawSource(), MDep->getSourceAlignment(),
1072  M->getLength(), M->isVolatile());
1073 
1074  // Remove the instruction we're replacing.
1075  MD->removeInstruction(M);
1076  M->eraseFromParent();
1077  ++NumMemCpyInstr;
1078  return true;
1079 }
1080 
1081 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1082 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that
1083 /// weren't copied over by \p MemCpy.
1084 ///
1085 /// In other words, transform:
1086 /// \code
1087 /// memset(dst, c, dst_size);
1088 /// memcpy(dst, src, src_size);
1089 /// \endcode
1090 /// into:
1091 /// \code
1092 /// memcpy(dst, src, src_size);
1093 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1094 /// \endcode
1095 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1096  MemSetInst *MemSet) {
1097  // We can only transform memset/memcpy with the same destination.
1098  if (MemSet->getDest() != MemCpy->getDest())
1099  return false;
1100 
1101  // Check that there are no other dependencies on the memset destination.
1102  MemDepResult DstDepInfo =
1103  MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
1104  MemCpy->getIterator(), MemCpy->getParent());
1105  if (DstDepInfo.getInst() != MemSet)
1106  return false;
1107 
1108  // Use the same i8* dest as the memcpy, killing the memset dest if different.
1109  Value *Dest = MemCpy->getRawDest();
1110  Value *DestSize = MemSet->getLength();
1111  Value *SrcSize = MemCpy->getLength();
1112 
1113  // By default, create an unaligned memset.
1114  unsigned Align = 1;
1115  // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1116  // of the sum.
1117  const unsigned DestAlign =
1118  std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
1119  if (DestAlign > 1)
1120  if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1121  Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1122 
1123  IRBuilder<> Builder(MemCpy);
1124 
1125  // If the sizes have different types, zext the smaller one.
1126  if (DestSize->getType() != SrcSize->getType()) {
1127  if (DestSize->getType()->getIntegerBitWidth() >
1128  SrcSize->getType()->getIntegerBitWidth())
1129  SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1130  else
1131  DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1132  }
1133 
1134  Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1135  Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1136  Value *MemsetLen = Builder.CreateSelect(
1137  Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1138  Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1),
1139  MemsetLen, Align);
1140 
1141  MD->removeInstruction(MemSet);
1142  MemSet->eraseFromParent();
1143  return true;
1144 }
1145 
1146 /// Determine whether the instruction has undefined content for the given Size,
1147 /// either because it was freshly alloca'd or started its lifetime.
1149  if (isa<AllocaInst>(I))
1150  return true;
1151 
1152  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1153  if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1154  if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1155  if (LTSize->getZExtValue() >= Size->getZExtValue())
1156  return true;
1157 
1158  return false;
1159 }
1160 
1161 /// Transform memcpy to memset when its source was just memset.
1162 /// In other words, turn:
1163 /// \code
1164 /// memset(dst1, c, dst1_size);
1165 /// memcpy(dst2, dst1, dst2_size);
1166 /// \endcode
1167 /// into:
1168 /// \code
1169 /// memset(dst1, c, dst1_size);
1170 /// memset(dst2, c, dst2_size);
1171 /// \endcode
1172 /// When dst2_size <= dst1_size.
1173 ///
1174 /// The \p MemCpy must have a Constant length.
1175 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1176  MemSetInst *MemSet) {
1177  AliasAnalysis &AA = LookupAliasAnalysis();
1178 
1179  // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1180  // memcpying from the same address. Otherwise it is hard to reason about.
1181  if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1182  return false;
1183 
1184  // A known memset size is required.
1185  ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
1186  if (!MemSetSize)
1187  return false;
1188 
1189  // Make sure the memcpy doesn't read any more than what the memset wrote.
1190  // Don't worry about sizes larger than i64.
1191  ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
1192  if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) {
1193  // If the memcpy is larger than the memset, but the memory was undef prior
1194  // to the memset, we can just ignore the tail. Technically we're only
1195  // interested in the bytes from MemSetSize..CopySize here, but as we can't
1196  // easily represent this location, we use the full 0..CopySize range.
1197  MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1198  MemDepResult DepInfo = MD->getPointerDependencyFrom(
1199  MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent());
1200  if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
1201  CopySize = MemSetSize;
1202  else
1203  return false;
1204  }
1205 
1206  IRBuilder<> Builder(MemCpy);
1207  Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1208  CopySize, MemCpy->getDestAlignment());
1209  return true;
1210 }
1211 
1212 /// Perform simplification of memcpy's. If we have memcpy A
1213 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1214 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1215 /// circumstances). This allows later passes to remove the first memcpy
1216 /// altogether.
1217 bool MemCpyOptPass::processMemCpy(MemCpyInst *M) {
1218  // We can only optimize non-volatile memcpy's.
1219  if (M->isVolatile()) return false;
1220 
1221  // If the source and destination of the memcpy are the same, then zap it.
1222  if (M->getSource() == M->getDest()) {
1223  MD->removeInstruction(M);
1224  M->eraseFromParent();
1225  return false;
1226  }
1227 
1228  // If copying from a constant, try to turn the memcpy into a memset.
1229  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
1230  if (GV->isConstant() && GV->hasDefinitiveInitializer())
1231  if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
1232  IRBuilder<> Builder(M);
1233  Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1234  M->getDestAlignment(), false);
1235  MD->removeInstruction(M);
1236  M->eraseFromParent();
1237  ++NumCpyToSet;
1238  return true;
1239  }
1240 
1241  MemDepResult DepInfo = MD->getDependency(M);
1242 
1243  // Try to turn a partially redundant memset + memcpy into
1244  // memcpy + smaller memset. We don't need the memcpy size for this.
1245  if (DepInfo.isClobber())
1246  if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
1247  if (processMemSetMemCpyDependence(M, MDep))
1248  return true;
1249 
1250  // The optimizations after this point require the memcpy size.
1251  ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
1252  if (!CopySize) return false;
1253 
1254  // There are four possible optimizations we can do for memcpy:
1255  // a) memcpy-memcpy xform which exposes redundance for DSE.
1256  // b) call-memcpy xform for return slot optimization.
1257  // c) memcpy from freshly alloca'd space or space that has just started its
1258  // lifetime copies undefined data, and we can therefore eliminate the
1259  // memcpy in favor of the data that was already at the destination.
1260  // d) memcpy from a just-memset'd source can be turned into memset.
1261  if (DepInfo.isClobber()) {
1262  if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
1263  // FIXME: Can we pass in either of dest/src alignment here instead
1264  // of conservatively taking the minimum?
1265  unsigned Align = MinAlign(M->getDestAlignment(), M->getSourceAlignment());
1266  if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
1267  CopySize->getZExtValue(), Align,
1268  C)) {
1269  MD->removeInstruction(M);
1270  M->eraseFromParent();
1271  return true;
1272  }
1273  }
1274  }
1275 
1277  MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
1278  SrcLoc, true, M->getIterator(), M->getParent());
1279 
1280  if (SrcDepInfo.isClobber()) {
1281  if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
1282  return processMemCpyMemCpyDependence(M, MDep);
1283  } else if (SrcDepInfo.isDef()) {
1284  if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) {
1285  MD->removeInstruction(M);
1286  M->eraseFromParent();
1287  ++NumMemCpyInstr;
1288  return true;
1289  }
1290  }
1291 
1292  if (SrcDepInfo.isClobber())
1293  if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
1294  if (performMemCpyToMemSetOptzn(M, MDep)) {
1295  MD->removeInstruction(M);
1296  M->eraseFromParent();
1297  ++NumCpyToSet;
1298  return true;
1299  }
1300 
1301  return false;
1302 }
1303 
1304 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1305 /// not to alias.
1306 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1307  AliasAnalysis &AA = LookupAliasAnalysis();
1308 
1309  if (!TLI->has(LibFunc_memmove))
1310  return false;
1311 
1312  // See if the pointers alias.
1315  return false;
1316 
1317  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1318  << "\n");
1319 
1320  // If not, then we know we can transform this.
1321  Type *ArgTys[3] = { M->getRawDest()->getType(),
1322  M->getRawSource()->getType(),
1323  M->getLength()->getType() };
1325  Intrinsic::memcpy, ArgTys));
1326 
1327  // MemDep may have over conservative information about this instruction, just
1328  // conservatively flush it from the cache.
1329  MD->removeInstruction(M);
1330 
1331  ++NumMoveToCpy;
1332  return true;
1333 }
1334 
1335 /// This is called on every byval argument in call sites.
1336 bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) {
1337  const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
1338  // Find out what feeds this byval argument.
1339  Value *ByValArg = CS.getArgument(ArgNo);
1340  Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
1341  uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
1342  MemDepResult DepInfo = MD->getPointerDependencyFrom(
1343  MemoryLocation(ByValArg, LocationSize::precise(ByValSize)), true,
1345  if (!DepInfo.isClobber())
1346  return false;
1347 
1348  // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
1349  // a memcpy, see if we can byval from the source of the memcpy instead of the
1350  // result.
1351  MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
1352  if (!MDep || MDep->isVolatile() ||
1353  ByValArg->stripPointerCasts() != MDep->getDest())
1354  return false;
1355 
1356  // The length of the memcpy must be larger or equal to the size of the byval.
1357  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1358  if (!C1 || C1->getValue().getZExtValue() < ByValSize)
1359  return false;
1360 
1361  // Get the alignment of the byval. If the call doesn't specify the alignment,
1362  // then it is some target specific value that we can't know.
1363  unsigned ByValAlign = CS.getParamAlignment(ArgNo);
1364  if (ByValAlign == 0) return false;
1365 
1366  // If it is greater than the memcpy, then we check to see if we can force the
1367  // source of the memcpy to the alignment we need. If we fail, we bail out.
1368  AssumptionCache &AC = LookupAssumptionCache();
1369  DominatorTree &DT = LookupDomTree();
1370  if (MDep->getSourceAlignment() < ByValAlign &&
1371  getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
1372  CS.getInstruction(), &AC, &DT) < ByValAlign)
1373  return false;
1374 
1375  // The address space of the memcpy source must match the byval argument
1376  if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1377  ByValArg->getType()->getPointerAddressSpace())
1378  return false;
1379 
1380  // Verify that the copied-from memory doesn't change in between the memcpy and
1381  // the byval call.
1382  // memcpy(a <- b)
1383  // *b = 42;
1384  // foo(*a)
1385  // It would be invalid to transform the second memcpy into foo(*b).
1386  //
1387  // NOTE: This is conservative, it will stop on any read from the source loc,
1388  // not just the defining memcpy.
1389  MemDepResult SourceDep = MD->getPointerDependencyFrom(
1390  MemoryLocation::getForSource(MDep), false,
1391  CS.getInstruction()->getIterator(), MDep->getParent());
1392  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1393  return false;
1394 
1395  Value *TmpCast = MDep->getSource();
1396  if (MDep->getSource()->getType() != ByValArg->getType())
1397  TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1398  "tmpcast", CS.getInstruction());
1399 
1400  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1401  << " " << *MDep << "\n"
1402  << " " << *CS.getInstruction() << "\n");
1403 
1404  // Otherwise we're good! Update the byval argument.
1405  CS.setArgument(ArgNo, TmpCast);
1406  ++NumMemCpyInstr;
1407  return true;
1408 }
1409 
1410 /// Executes one iteration of MemCpyOptPass.
1411 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1412  bool MadeChange = false;
1413 
1414  DominatorTree &DT = LookupDomTree();
1415 
1416  // Walk all instruction in the function.
1417  for (BasicBlock &BB : F) {
1418  // Skip unreachable blocks. For example processStore assumes that an
1419  // instruction in a BB can't be dominated by a later instruction in the
1420  // same BB (which is a scenario that can happen for an unreachable BB that
1421  // has itself as a predecessor).
1422  if (!DT.isReachableFromEntry(&BB))
1423  continue;
1424 
1425  for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1426  // Avoid invalidating the iterator.
1427  Instruction *I = &*BI++;
1428 
1429  bool RepeatInstruction = false;
1430 
1431  if (StoreInst *SI = dyn_cast<StoreInst>(I))
1432  MadeChange |= processStore(SI, BI);
1433  else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1434  RepeatInstruction = processMemSet(M, BI);
1435  else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1436  RepeatInstruction = processMemCpy(M);
1437  else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1438  RepeatInstruction = processMemMove(M);
1439  else if (auto CS = CallSite(I)) {
1440  for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
1441  if (CS.isByValArgument(i))
1442  MadeChange |= processByValArgument(CS, i);
1443  }
1444 
1445  // Reprocess the instruction if desired.
1446  if (RepeatInstruction) {
1447  if (BI != BB.begin())
1448  --BI;
1449  MadeChange = true;
1450  }
1451  }
1452  }
1453 
1454  return MadeChange;
1455 }
1456 
1458  auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1459  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1460 
1461  auto LookupAliasAnalysis = [&]() -> AliasAnalysis & {
1462  return AM.getResult<AAManager>(F);
1463  };
1464  auto LookupAssumptionCache = [&]() -> AssumptionCache & {
1465  return AM.getResult<AssumptionAnalysis>(F);
1466  };
1467  auto LookupDomTree = [&]() -> DominatorTree & {
1468  return AM.getResult<DominatorTreeAnalysis>(F);
1469  };
1470 
1471  bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis,
1472  LookupAssumptionCache, LookupDomTree);
1473  if (!MadeChange)
1474  return PreservedAnalyses::all();
1475 
1476  PreservedAnalyses PA;
1477  PA.preserveSet<CFGAnalyses>();
1478  PA.preserve<GlobalsAA>();
1480  return PA;
1481 }
1482 
1485  std::function<AliasAnalysis &()> LookupAliasAnalysis_,
1486  std::function<AssumptionCache &()> LookupAssumptionCache_,
1487  std::function<DominatorTree &()> LookupDomTree_) {
1488  bool MadeChange = false;
1489  MD = MD_;
1490  TLI = TLI_;
1491  LookupAliasAnalysis = std::move(LookupAliasAnalysis_);
1492  LookupAssumptionCache = std::move(LookupAssumptionCache_);
1493  LookupDomTree = std::move(LookupDomTree_);
1494 
1495  // If we don't have at least memset and memcpy, there is little point of doing
1496  // anything here. These are required by a freestanding implementation, so if
1497  // even they are disabled, there is no point in trying hard.
1498  if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
1499  return false;
1500 
1501  while (true) {
1502  if (!iterateOnFunction(F))
1503  break;
1504  MadeChange = true;
1505  }
1506 
1507  MD = nullptr;
1508  return MadeChange;
1509 }
1510 
1511 /// This is the main transformation entry point for a function.
1513  if (skipFunction(F))
1514  return false;
1515 
1516  auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1517  auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1518 
1519  auto LookupAliasAnalysis = [this]() -> AliasAnalysis & {
1520  return getAnalysis<AAResultsWrapperPass>().getAAResults();
1521  };
1522  auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & {
1523  return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1524  };
1525  auto LookupDomTree = [this]() -> DominatorTree & {
1526  return getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1527  };
1528 
1529  return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache,
1530  LookupDomTree);
1531 }
Legacy wrapper pass to provide the GlobalsAAResult object.
uint64_t CallInst * C
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks &#39;this&#39; from the containing basic block and deletes it.
Definition: Instruction.cpp:68
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:259
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT)
This is the entry point for all transforms.
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
Provides a lazy, caching interface for making common memory aliasing information queries, backed by LLVM&#39;s alias analysis passes.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1563
unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to ensure that the alignment of V is at least PrefAlign bytes.
Definition: Local.cpp:1184
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
Definition: Path.cpp:250
unsigned arg_size() const
Definition: CallSite.h:219
typename SuperClass::const_iterator const_iterator
Definition: SmallVector.h:328
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:770
This class represents lattice values for constants.
Definition: AllocatorList.h:24
unsigned getParamAlignment(unsigned ArgNo) const
Extract the alignment for a call or parameter (0=unknown).
Definition: CallSite.h:406
Value * isBytewiseValue(Value *V)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", false, false) INITIALIZE_PASS_END(MemCpyOptLegacyPass
This is the interface for a simple mod/ref and alias analysis over globals.
bool isSized(SmallPtrSetImpl< Type *> *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition: Type.h:265
Implements a dense probed hash-table based set.
Definition: DenseSet.h:250
const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
Definition: DataLayout.cpp:588
bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB)
A trivial helper function to check to see if the specified pointers are no-alias. ...
This provides a very simple, boring adaptor for a begin and end iterator into a range type...
This class represents a function call, abstracting a target machine&#39;s calling convention.
An immutable pass that tracks lazily created AssumptionCache objects.
unsigned getSourceAlignment() const
Value * getValue() const
A cache of @llvm.assume calls within a function.
static LocationSize precise(uint64_t Value)
static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset, const DataLayout &DL)
Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and return that constant offset...
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
This class wraps the llvm.memset intrinsic.
STATISTIC(NumFunctions, "Total number of functions")
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1014
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:231
F(f)
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: DerivedTypes.h:503
CallInst * CreateMemSet(Value *Ptr, Value *Val, uint64_t Size, unsigned Align, bool isVolatile=false, MDNode *TBAATag=nullptr, MDNode *ScopeTag=nullptr, MDNode *NoAliasTag=nullptr)
Create and insert a memset to the specified pointer and the specified value.
Definition: IRBuilder.h:404
An instruction for reading from memory.
Definition: Instructions.h:168
Hexagon Common GEP
Value * CreateICmpULE(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1859
Value * getLength() const
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Definition: Dominators.cpp:300
static Constant * getNullValue(Type *Ty)
Constructor to create a &#39;0&#39; constant of arbitrary type.
Definition: Constants.cpp:265
Value * getDest() const
This is just like getRawDest, but it strips off any cast instructions (including addrspacecast) that ...
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:51
bool isDef() const
Tests if this MemDepResult represents a query that is an instruction definition dependency.
static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, bool &VariableIdxFound, const DataLayout &DL)
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:371
unsigned getAlignment() const
Return the alignment of the memory that is being allocated by the instruction.
Definition: Instructions.h:113
static unsigned findStoreAlignment(const DataLayout &DL, const StoreInst *SI)
bool isClobber() const
Tests if this MemDepResult represents a query that is an instruction clobber dependency.
This class wraps the llvm.memmove intrinsic.
Class to represent struct types.
Definition: DerivedTypes.h:201
static bool hasUndefContents(Instruction *I, ConstantInt *Size)
Determine whether the instruction has undefined content for the given Size, either because it was fre...
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:743
void setCalledFunction(Value *Fn)
Sets the function called, including updating the function type.
Definition: InstrTypes.h:1210
InstrTy * getInstruction() const
Definition: CallSite.h:92
An analysis that produces MemoryDependenceResults for a function.
CallInst * CreateMemMove(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, bool isVolatile=false, MDNode *TBAATag=nullptr, MDNode *ScopeTag=nullptr, MDNode *NoAliasTag=nullptr)
Create and insert a memmove between the specified pointers.
Definition: IRBuilder.h:494
unsigned getDestAlignment() const
void setArgument(unsigned ArgNo, Value *newVal)
Definition: CallSite.h:191
auto reverse(ContainerTy &&C, typename std::enable_if< has_rbegin< ContainerTy >::value >::type *=nullptr) -> decltype(make_range(C.rbegin(), C.rend()))
Definition: STLExtras.h:267
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
static MemoryLocation getForDest(const MemIntrinsic *MI)
Return a location representing the destination of a memory set or transfer.
This class represents a no-op cast from one type to another.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:221
void combineMetadata(Instruction *K, const Instruction *J, ArrayRef< unsigned > KnownIDs, bool DoesKMove)
Combine the metadata of two instructions so that K can replace J.
Definition: Local.cpp:2274
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:138
auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range))
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1282
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1031
An instruction for storing to memory.
Definition: Instructions.h:321
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1659
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:145
Function * getDeclaration(Module *M, ID id, ArrayRef< Type *> Tys=None)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1020
Value * getOperand(unsigned i) const
Definition: User.h:170
constexpr uint64_t MinAlign(uint64_t A, uint64_t B)
A and B are either alignments or offsets.
Definition: MathExtras.h:610
an instruction for type-safe pointer arithmetic to access elements of arrays and structs ...
Definition: Instructions.h:854
static bool runOnFunction(Function &F, bool PostInlining)
#define P(N)
static MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:149
A set of analyses that are preserved following a run of a transformation pass.
Definition: PassManager.h:154
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:308
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator begin()
Definition: SmallVector.h:129
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition: IRBuilder.h:2021
A manager for alias analyses.
bool mayThrow() const
Return true if this instruction may throw an exception.
Represent the analysis usage information of a pass.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1193
Analysis pass providing a never-invalidated alias analysis result.
unsigned getLargestLegalIntTypeSizeInBits() const
Returns the size of largest legal integer type size, or 0 if none are set.
Definition: DataLayout.cpp:772
FunctionPass * createMemCpyOptPass()
The public interface to this file...
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:285
self_iterator getIterator()
Definition: ilist_node.h:82
static CastInst * CreatePointerCast(Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd)
Create a BitCast AddrSpaceCast, or a PtrToInt cast instruction.
bool doesNotCapture(unsigned OpNo) const
Determine whether this data operand is not captured.
Definition: CallSite.h:593
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs, and aliases.
Definition: Value.cpp:529
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: PassManager.h:160
void initializeMemCpyOptLegacyPassPass(PassRegistry &)
const Value * getArraySize() const
Get the number of elements allocated.
Definition: Instructions.h:93
A wrapper analysis pass for the legacy pass manager that exposes a MemoryDepnedenceResults instance...
bool isVolatile() const
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
Definition: Instructions.h:106
A memory dependence query can return one of three different answers.
bool runImpl(Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_, std::function< AliasAnalysis &()> LookupAliasAnalysis_, std::function< AssumptionCache &()> LookupAssumptionCache_, std::function< DominatorTree &()> LookupDomTree_)
constexpr bool empty(const T &RangeOrContainer)
Test whether RangeOrContainer is empty. Similar to C++17 std::empty.
Definition: STLExtras.h:210
The two locations may or may not alias. This is the least precise result.
Definition: AliasAnalysis.h:86
Value * CreateGEP(Value *Ptr, ArrayRef< Value *> IdxList, const Twine &Name="")
Definition: IRBuilder.h:1458
Representation for a specific memory location.
A function analysis which provides an AssumptionCache.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
Iterator for intrusive lists based on ilist_node.
unsigned getNumOperands() const
Definition: User.h:192
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
ValTy * getArgument(unsigned ArgNo) const
Definition: CallSite.h:186
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
bool dominates(const Instruction *Def, const Use &U) const
Return true if Def dominates a use in User.
Definition: Dominators.cpp:249
Module.h This file contains the declarations for the Module class.
Provides information about what library functions are available for the current target.
unsigned getABITypeAlignment(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
Definition: DataLayout.cpp:730
const DataFlowGraph & G
Definition: RDFGraph.cpp:211
static unsigned findLoadAlignment(const DataLayout &DL, const LoadInst *LI)
CallInst * CreateMemCpy(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, bool isVolatile=false, MDNode *TBAATag=nullptr, MDNode *TBAAStructTag=nullptr, MDNode *ScopeTag=nullptr, MDNode *NoAliasTag=nullptr)
Create and insert a memcpy between the specified pointers.
Definition: IRBuilder.h:446
This class wraps the llvm.memcpy intrinsic.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:286
Value * getRawSource() const
Return the arguments to the instruction.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:56
ModRefInfo callCapturesBefore(const Instruction *I, const MemoryLocation &MemLoc, DominatorTree *DT, OrderedBasicBlock *OBB=nullptr)
Return information about whether a particular call site modifies or reads the specified memory locati...
typename SuperClass::iterator iterator
Definition: SmallVector.h:327
iterator_range< user_iterator > users()
Definition: Value.h:400
bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB)
A trivial helper function to check to see if the specified pointers are must-alias.
MemCpy Optimization
Represents analyses that only rely on functions&#39; control flow.
Definition: PassManager.h:115
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::ZeroOrMore, cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate IT block based on arch"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow deprecated IT based on ARMv8"), clEnumValN(NoRestrictedIT, "arm-no-restrict-it", "Allow IT blocks based on ARMv7")))
uint64_t getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:436
LLVM_NODISCARD bool isModSet(const ModRefInfo MRI)
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator end()
Definition: SmallVector.h:133
FunTy * getCaller() const
Return the caller function for this call site.
Definition: CallSite.h:267
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:551
unsigned getAlignment() const
Return the alignment of the access that is being performed.
Definition: Instructions.h:241
Instruction * getInst() const
If this is a normal dependency, returns the instruction that is depended on.
unsigned getIntegerBitWidth() const
Definition: DerivedTypes.h:97
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
This file provides utility analysis objects describing memory locations.
void preserveSet()
Mark an analysis set as preserved.
Definition: PassManager.h:190
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation.
Definition: InstrTypes.h:1181
#define I(x, y, z)
Definition: MD5.cpp:58
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition: Constants.h:193
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
uint32_t Size
Definition: Profile.cpp:47
void preserve()
Mark an analysis as preserved.
Definition: PassManager.h:175
unsigned getAlignment() const
Return the alignment of the access that is being performed.
Definition: Instructions.h:366
static void addRange(SmallVectorImpl< ConstantInt *> &EndPoints, ConstantInt *Low, ConstantInt *High)
Definition: Metadata.cpp:968
bool isByValArgument(unsigned ArgNo) const
Determine whether this argument is passed by value.
Definition: CallSite.h:598
Analysis pass providing the TargetLibraryInfo.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
user_iterator user_begin()
Definition: Value.h:376
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:566
LLVM Value Representation.
Definition: Value.h:73
uint64_t getTypeStoreSize(Type *Ty) const
Returns the maximum number of bytes that may be overwritten by storing the specified type...
Definition: DataLayout.h:419
ModRefInfo
Flags indicating whether a memory access modifies or references memory.
Value * getSource() const
This is just like getRawSource, but it strips off any cast instructions that feed it...
print Print MemDeps of function
A container for analyses that lazily runs them and caches their results.
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:260
LLVM_NODISCARD bool isModOrRefSet(const ModRefInfo MRI)
static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P, const LoadInst *LI)
static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI, const LoadInst *LI)
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object...
bool isSimple() const
Definition: Instructions.h:402
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition: Constants.h:157
This header defines various interfaces for pass management in LLVM.
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc)
getModRefInfo (for call sites) - Return information about whether a particular call site modifies or ...
#define LLVM_DEBUG(X)
Definition: Debug.h:123
Value * getPointerOperand()
Definition: Instructions.h:413
Value * getRawDest() const
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:44
const BasicBlock * getParent() const
Definition: Instruction.h:67
an instruction to allocate memory on the stack
Definition: Instructions.h:60
gep_type_iterator gep_type_begin(const User *GEP)
static MemoryLocation getForSource(const MemTransferInst *MTI)
Return a location representing the source of a memory transfer.
user_iterator user_end()
Definition: Value.h:384