LLVM  8.0.1
LegalizeVectorOps.cpp
Go to the documentation of this file.
1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeVectors method.
11 //
12 // The vector legalizer looks for vector operations which might need to be
13 // scalarized and legalizes them. This is a separate step from Legalize because
14 // scalarizing can introduce illegal types. For example, suppose we have an
15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17 // operation, which introduces nodes with the illegal type i64 which must be
18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19 // the operation must be unrolled, which introduces nodes with the illegal
20 // type i8 which must be promoted.
21 //
22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23 // or operations that happen to take a vector which are custom-lowered;
24 // the legalization for such operations never produces nodes
25 // with illegal types, so it's okay to put off legalizing them until
26 // SelectionDAG::Legalize runs.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/ADT/APInt.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compiler.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "legalizevectorops"
53 
54 namespace {
55 
56 class VectorLegalizer {
57  SelectionDAG& DAG;
58  const TargetLowering &TLI;
59  bool Changed = false; // Keep track of whether anything changed
60 
61  /// For nodes that are of legal width, and that have more than one use, this
62  /// map indicates what regularized operand to use. This allows us to avoid
63  /// legalizing the same thing more than once.
65 
66  /// Adds a node to the translation cache.
67  void AddLegalizedOperand(SDValue From, SDValue To) {
68  LegalizedNodes.insert(std::make_pair(From, To));
69  // If someone requests legalization of the new node, return itself.
70  if (From != To)
71  LegalizedNodes.insert(std::make_pair(To, To));
72  }
73 
74  /// Legalizes the given node.
75  SDValue LegalizeOp(SDValue Op);
76 
77  /// Assuming the node is legal, "legalize" the results.
78  SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
79 
80  /// Implements unrolling a VSETCC.
81  SDValue UnrollVSETCC(SDValue Op);
82 
83  /// Implement expand-based legalization of vector operations.
84  ///
85  /// This is just a high-level routine to dispatch to specific code paths for
86  /// operations to legalize them.
87  SDValue Expand(SDValue Op);
88 
89  /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
90  /// FP_TO_SINT isn't legal.
91  SDValue ExpandFP_TO_UINT(SDValue Op);
92 
93  /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
94  /// SINT_TO_FLOAT and SHR on vectors isn't legal.
95  SDValue ExpandUINT_TO_FLOAT(SDValue Op);
96 
97  /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
98  SDValue ExpandSEXTINREG(SDValue Op);
99 
100  /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
101  ///
102  /// Shuffles the low lanes of the operand into place and bitcasts to the proper
103  /// type. The contents of the bits in the extended part of each element are
104  /// undef.
105  SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
106 
107  /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
108  ///
109  /// Shuffles the low lanes of the operand into place, bitcasts to the proper
110  /// type, then shifts left and arithmetic shifts right to introduce a sign
111  /// extension.
112  SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
113 
114  /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
115  ///
116  /// Shuffles the low lanes of the operand into place and blends zeros into
117  /// the remaining lanes, finally bitcasting to the proper type.
118  SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
119 
120  /// Implement expand-based legalization of ABS vector operations.
121  /// If following expanding is legal/custom then do it:
122  /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1))
123  /// else unroll the operation.
124  SDValue ExpandABS(SDValue Op);
125 
126  /// Expand bswap of vectors into a shuffle if legal.
127  SDValue ExpandBSWAP(SDValue Op);
128 
129  /// Implement vselect in terms of XOR, AND, OR when blend is not
130  /// supported by the target.
131  SDValue ExpandVSELECT(SDValue Op);
132  SDValue ExpandSELECT(SDValue Op);
133  SDValue ExpandLoad(SDValue Op);
134  SDValue ExpandStore(SDValue Op);
135  SDValue ExpandFNEG(SDValue Op);
136  SDValue ExpandFSUB(SDValue Op);
137  SDValue ExpandBITREVERSE(SDValue Op);
138  SDValue ExpandCTPOP(SDValue Op);
139  SDValue ExpandCTLZ(SDValue Op);
140  SDValue ExpandCTTZ(SDValue Op);
141  SDValue ExpandFunnelShift(SDValue Op);
142  SDValue ExpandROT(SDValue Op);
143  SDValue ExpandFMINNUM_FMAXNUM(SDValue Op);
144  SDValue ExpandAddSubSat(SDValue Op);
145  SDValue ExpandStrictFPOp(SDValue Op);
146 
147  /// Implements vector promotion.
148  ///
149  /// This is essentially just bitcasting the operands to a different type and
150  /// bitcasting the result back to the original type.
151  SDValue Promote(SDValue Op);
152 
153  /// Implements [SU]INT_TO_FP vector promotion.
154  ///
155  /// This is a [zs]ext of the input operand to a larger integer type.
156  SDValue PromoteINT_TO_FP(SDValue Op);
157 
158  /// Implements FP_TO_[SU]INT vector promotion of the result type.
159  ///
160  /// It is promoted to a larger integer type. The result is then
161  /// truncated back to the original type.
162  SDValue PromoteFP_TO_INT(SDValue Op);
163 
164 public:
165  VectorLegalizer(SelectionDAG& dag) :
166  DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
167 
168  /// Begin legalizer the vector operations in the DAG.
169  bool Run();
170 };
171 
172 } // end anonymous namespace
173 
174 bool VectorLegalizer::Run() {
175  // Before we start legalizing vector nodes, check if there are any vectors.
176  bool HasVectors = false;
177  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
178  E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
179  // Check if the values of the nodes contain vectors. We don't need to check
180  // the operands because we are going to check their values at some point.
181  for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
182  J != E; ++J)
183  HasVectors |= J->isVector();
184 
185  // If we found a vector node we can start the legalization.
186  if (HasVectors)
187  break;
188  }
189 
190  // If this basic block has no vectors then no need to legalize vectors.
191  if (!HasVectors)
192  return false;
193 
194  // The legalize process is inherently a bottom-up recursive process (users
195  // legalize their uses before themselves). Given infinite stack space, we
196  // could just start legalizing on the root and traverse the whole graph. In
197  // practice however, this causes us to run out of stack space on large basic
198  // blocks. To avoid this problem, compute an ordering of the nodes where each
199  // node is only legalized after all of its operands are legalized.
200  DAG.AssignTopologicalOrder();
201  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
202  E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
203  LegalizeOp(SDValue(&*I, 0));
204 
205  // Finally, it's possible the root changed. Get the new root.
206  SDValue OldRoot = DAG.getRoot();
207  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
208  DAG.setRoot(LegalizedNodes[OldRoot]);
209 
210  LegalizedNodes.clear();
211 
212  // Remove dead nodes now.
213  DAG.RemoveDeadNodes();
214 
215  return Changed;
216 }
217 
218 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
219  // Generic legalization: just pass the operand through.
220  for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
221  AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
222  return Result.getValue(Op.getResNo());
223 }
224 
225 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
226  // Note that LegalizeOp may be reentered even from single-use nodes, which
227  // means that we always must cache transformed nodes.
228  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
229  if (I != LegalizedNodes.end()) return I->second;
230 
231  SDNode* Node = Op.getNode();
232 
233  // Legalize the operands
235  for (const SDValue &Op : Node->op_values())
236  Ops.push_back(LegalizeOp(Op));
237 
238  SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops),
239  Op.getResNo());
240 
241  if (Op.getOpcode() == ISD::LOAD) {
242  LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
244  if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
245  LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
246  Node->dump(&DAG));
247  switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
248  LD->getMemoryVT())) {
249  default: llvm_unreachable("This action is not supported yet!");
251  return TranslateLegalizeResults(Op, Result);
253  if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
254  assert(Lowered->getNumValues() == Op->getNumValues() &&
255  "Unexpected number of results");
256  if (Lowered != Result) {
257  // Make sure the new code is also legal.
258  Lowered = LegalizeOp(Lowered);
259  Changed = true;
260  }
261  return TranslateLegalizeResults(Op, Lowered);
262  }
265  Changed = true;
266  return LegalizeOp(ExpandLoad(Op));
267  }
268  }
269  } else if (Op.getOpcode() == ISD::STORE) {
270  StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
271  EVT StVT = ST->getMemoryVT();
272  MVT ValVT = ST->getValue().getSimpleValueType();
273  if (StVT.isVector() && ST->isTruncatingStore()) {
274  LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
275  Node->dump(&DAG));
276  switch (TLI.getTruncStoreAction(ValVT, StVT)) {
277  default: llvm_unreachable("This action is not supported yet!");
279  return TranslateLegalizeResults(Op, Result);
280  case TargetLowering::Custom: {
281  SDValue Lowered = TLI.LowerOperation(Result, DAG);
282  if (Lowered != Result) {
283  // Make sure the new code is also legal.
284  Lowered = LegalizeOp(Lowered);
285  Changed = true;
286  }
287  return TranslateLegalizeResults(Op, Lowered);
288  }
290  Changed = true;
291  return LegalizeOp(ExpandStore(Op));
292  }
293  }
294  }
295 
296  bool HasVectorValue = false;
297  for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
298  J != E;
299  ++J)
300  HasVectorValue |= J->isVector();
301  if (!HasVectorValue)
302  return TranslateLegalizeResults(Op, Result);
303 
305  switch (Op.getOpcode()) {
306  default:
307  return TranslateLegalizeResults(Op, Result);
308  case ISD::STRICT_FADD:
309  case ISD::STRICT_FSUB:
310  case ISD::STRICT_FMUL:
311  case ISD::STRICT_FDIV:
312  case ISD::STRICT_FREM:
313  case ISD::STRICT_FSQRT:
314  case ISD::STRICT_FMA:
315  case ISD::STRICT_FPOW:
316  case ISD::STRICT_FPOWI:
317  case ISD::STRICT_FSIN:
318  case ISD::STRICT_FCOS:
319  case ISD::STRICT_FEXP:
320  case ISD::STRICT_FEXP2:
321  case ISD::STRICT_FLOG:
322  case ISD::STRICT_FLOG10:
323  case ISD::STRICT_FLOG2:
324  case ISD::STRICT_FRINT:
326  case ISD::STRICT_FMAXNUM:
327  case ISD::STRICT_FMINNUM:
328  case ISD::STRICT_FCEIL:
329  case ISD::STRICT_FFLOOR:
330  case ISD::STRICT_FROUND:
331  case ISD::STRICT_FTRUNC:
332  // These pseudo-ops get legalized as if they were their non-strict
333  // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT
334  // is also legal, but if ISD::FSQRT requires expansion then so does
335  // ISD::STRICT_FSQRT.
336  Action = TLI.getStrictFPOperationAction(Node->getOpcode(),
337  Node->getValueType(0));
338  break;
339  case ISD::ADD:
340  case ISD::SUB:
341  case ISD::MUL:
342  case ISD::MULHS:
343  case ISD::MULHU:
344  case ISD::SDIV:
345  case ISD::UDIV:
346  case ISD::SREM:
347  case ISD::UREM:
348  case ISD::SDIVREM:
349  case ISD::UDIVREM:
350  case ISD::FADD:
351  case ISD::FSUB:
352  case ISD::FMUL:
353  case ISD::FDIV:
354  case ISD::FREM:
355  case ISD::AND:
356  case ISD::OR:
357  case ISD::XOR:
358  case ISD::SHL:
359  case ISD::SRA:
360  case ISD::SRL:
361  case ISD::FSHL:
362  case ISD::FSHR:
363  case ISD::ROTL:
364  case ISD::ROTR:
365  case ISD::ABS:
366  case ISD::BSWAP:
367  case ISD::BITREVERSE:
368  case ISD::CTLZ:
369  case ISD::CTTZ:
372  case ISD::CTPOP:
373  case ISD::SELECT:
374  case ISD::VSELECT:
375  case ISD::SELECT_CC:
376  case ISD::SETCC:
377  case ISD::ZERO_EXTEND:
378  case ISD::ANY_EXTEND:
379  case ISD::TRUNCATE:
380  case ISD::SIGN_EXTEND:
381  case ISD::FP_TO_SINT:
382  case ISD::FP_TO_UINT:
383  case ISD::FNEG:
384  case ISD::FABS:
385  case ISD::FMINNUM:
386  case ISD::FMAXNUM:
387  case ISD::FMINNUM_IEEE:
388  case ISD::FMAXNUM_IEEE:
389  case ISD::FMINIMUM:
390  case ISD::FMAXIMUM:
391  case ISD::FCOPYSIGN:
392  case ISD::FSQRT:
393  case ISD::FSIN:
394  case ISD::FCOS:
395  case ISD::FPOWI:
396  case ISD::FPOW:
397  case ISD::FLOG:
398  case ISD::FLOG2:
399  case ISD::FLOG10:
400  case ISD::FEXP:
401  case ISD::FEXP2:
402  case ISD::FCEIL:
403  case ISD::FTRUNC:
404  case ISD::FRINT:
405  case ISD::FNEARBYINT:
406  case ISD::FROUND:
407  case ISD::FFLOOR:
408  case ISD::FP_ROUND:
409  case ISD::FP_EXTEND:
410  case ISD::FMA:
415  case ISD::SMIN:
416  case ISD::SMAX:
417  case ISD::UMIN:
418  case ISD::UMAX:
419  case ISD::SMUL_LOHI:
420  case ISD::UMUL_LOHI:
421  case ISD::FCANONICALIZE:
422  case ISD::SADDSAT:
423  case ISD::UADDSAT:
424  case ISD::SSUBSAT:
425  case ISD::USUBSAT:
426  Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
427  break;
428  case ISD::SMULFIX: {
429  unsigned Scale = Node->getConstantOperandVal(2);
430  Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
431  Node->getValueType(0), Scale);
432  break;
433  }
434  case ISD::FP_ROUND_INREG:
435  Action = TLI.getOperationAction(Node->getOpcode(),
436  cast<VTSDNode>(Node->getOperand(1))->getVT());
437  break;
438  case ISD::SINT_TO_FP:
439  case ISD::UINT_TO_FP:
440  Action = TLI.getOperationAction(Node->getOpcode(),
441  Node->getOperand(0).getValueType());
442  break;
443  }
444 
445  LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
446 
447  switch (Action) {
448  default: llvm_unreachable("This action is not supported yet!");
450  Result = Promote(Op);
451  Changed = true;
452  break;
454  LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
455  break;
456  case TargetLowering::Custom: {
457  LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
458  if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
459  LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
460  Result = Tmp1;
461  break;
462  }
463  LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
465  }
467  Result = Expand(Op);
468  }
469 
470  // Make sure that the generated code is itself legal.
471  if (Result != Op) {
472  Result = LegalizeOp(Result);
473  Changed = true;
474  }
475 
476  // Note that LegalizeOp may be reentered even from single-use nodes, which
477  // means that we always must cache transformed nodes.
478  AddLegalizedOperand(Op, Result);
479  return Result;
480 }
481 
482 SDValue VectorLegalizer::Promote(SDValue Op) {
483  // For a few operations there is a specific concept for promotion based on
484  // the operand's type.
485  switch (Op.getOpcode()) {
486  case ISD::SINT_TO_FP:
487  case ISD::UINT_TO_FP:
488  // "Promote" the operation by extending the operand.
489  return PromoteINT_TO_FP(Op);
490  case ISD::FP_TO_UINT:
491  case ISD::FP_TO_SINT:
492  // Promote the operation by extending the operand.
493  return PromoteFP_TO_INT(Op);
494  }
495 
496  // There are currently two cases of vector promotion:
497  // 1) Bitcasting a vector of integers to a different type to a vector of the
498  // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
499  // 2) Extending a vector of floats to a vector of the same number of larger
500  // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
501  MVT VT = Op.getSimpleValueType();
502  assert(Op.getNode()->getNumValues() == 1 &&
503  "Can't promote a vector with multiple results!");
504  MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
505  SDLoc dl(Op);
507 
508  for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
509  if (Op.getOperand(j).getValueType().isVector())
510  if (Op.getOperand(j)
511  .getValueType()
513  .isFloatingPoint() &&
514  NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
515  Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
516  else
517  Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
518  else
519  Operands[j] = Op.getOperand(j);
520  }
521 
522  Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
523  if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
525  NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
526  return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
527  else
528  return DAG.getNode(ISD::BITCAST, dl, VT, Op);
529 }
530 
531 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
532  // INT_TO_FP operations may require the input operand be promoted even
533  // when the type is otherwise legal.
534  MVT VT = Op.getOperand(0).getSimpleValueType();
535  MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
537  "Vectors have different number of elements!");
538 
539  SDLoc dl(Op);
541 
542  unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
544  for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
545  if (Op.getOperand(j).getValueType().isVector())
546  Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
547  else
548  Operands[j] = Op.getOperand(j);
549  }
550 
551  return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
552 }
553 
554 // For FP_TO_INT we promote the result type to a vector type with wider
555 // elements and then truncate the result. This is different from the default
556 // PromoteVector which uses bitcast to promote thus assumning that the
557 // promoted vector type has the same overall size.
558 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) {
559  MVT VT = Op.getSimpleValueType();
560  MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
562  "Vectors have different number of elements!");
563 
564  unsigned NewOpc = Op->getOpcode();
565  // Change FP_TO_UINT to FP_TO_SINT if possible.
566  // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
567  if (NewOpc == ISD::FP_TO_UINT &&
568  TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
569  NewOpc = ISD::FP_TO_SINT;
570 
571  SDLoc dl(Op);
572  SDValue Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0));
573 
574  // Assert that the converted value fits in the original type. If it doesn't
575  // (eg: because the value being converted is too big), then the result of the
576  // original operation was undefined anyway, so the assert is still correct.
577  Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext
578  : ISD::AssertSext,
579  dl, NVT, Promoted,
580  DAG.getValueType(VT.getScalarType()));
581  return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
582 }
583 
584 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
585  LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
586 
587  EVT SrcVT = LD->getMemoryVT();
588  EVT SrcEltVT = SrcVT.getScalarType();
589  unsigned NumElem = SrcVT.getVectorNumElements();
590 
591  SDValue NewChain;
592  SDValue Value;
593  if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
594  SDLoc dl(Op);
595 
597  SmallVector<SDValue, 8> LoadChains;
598 
599  EVT DstEltVT = LD->getValueType(0).getScalarType();
600  SDValue Chain = LD->getChain();
601  SDValue BasePTR = LD->getBasePtr();
603 
604  // When elements in a vector is not byte-addressable, we cannot directly
605  // load each element by advancing pointer, which could only address bytes.
606  // Instead, we load all significant words, mask bits off, and concatenate
607  // them to form each element. Finally, they are extended to destination
608  // scalar type to build the destination vector.
609  EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
610 
611  assert(WideVT.isRound() &&
612  "Could not handle the sophisticated case when the widest integer is"
613  " not power of 2.");
614  assert(WideVT.bitsGE(SrcEltVT) &&
615  "Type is not legalized?");
616 
617  unsigned WideBytes = WideVT.getStoreSize();
618  unsigned Offset = 0;
619  unsigned RemainingBytes = SrcVT.getStoreSize();
620  SmallVector<SDValue, 8> LoadVals;
621  while (RemainingBytes > 0) {
622  SDValue ScalarLoad;
623  unsigned LoadBytes = WideBytes;
624 
625  if (RemainingBytes >= LoadBytes) {
626  ScalarLoad =
627  DAG.getLoad(WideVT, dl, Chain, BasePTR,
628  LD->getPointerInfo().getWithOffset(Offset),
629  MinAlign(LD->getAlignment(), Offset),
630  LD->getMemOperand()->getFlags(), LD->getAAInfo());
631  } else {
632  EVT LoadVT = WideVT;
633  while (RemainingBytes < LoadBytes) {
634  LoadBytes >>= 1; // Reduce the load size by half.
635  LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
636  }
637  ScalarLoad =
638  DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
639  LD->getPointerInfo().getWithOffset(Offset), LoadVT,
640  MinAlign(LD->getAlignment(), Offset),
641  LD->getMemOperand()->getFlags(), LD->getAAInfo());
642  }
643 
644  RemainingBytes -= LoadBytes;
645  Offset += LoadBytes;
646 
647  BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes);
648 
649  LoadVals.push_back(ScalarLoad.getValue(0));
650  LoadChains.push_back(ScalarLoad.getValue(1));
651  }
652 
653  // Extract bits, pack and extend/trunc them into destination type.
654  unsigned SrcEltBits = SrcEltVT.getSizeInBits();
655  SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
656 
657  unsigned BitOffset = 0;
658  unsigned WideIdx = 0;
659  unsigned WideBits = WideVT.getSizeInBits();
660 
661  for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
662  SDValue Lo, Hi, ShAmt;
663 
664  if (BitOffset < WideBits) {
665  ShAmt = DAG.getConstant(
666  BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
667  Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
668  Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
669  }
670 
671  BitOffset += SrcEltBits;
672  if (BitOffset >= WideBits) {
673  WideIdx++;
674  BitOffset -= WideBits;
675  if (BitOffset > 0) {
676  ShAmt = DAG.getConstant(
677  SrcEltBits - BitOffset, dl,
678  TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
679  Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
680  Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
681  }
682  }
683 
684  if (Hi.getNode())
685  Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
686 
687  switch (ExtType) {
688  default: llvm_unreachable("Unknown extended-load op!");
689  case ISD::EXTLOAD:
690  Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
691  break;
692  case ISD::ZEXTLOAD:
693  Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
694  break;
695  case ISD::SEXTLOAD:
696  ShAmt =
697  DAG.getConstant(WideBits - SrcEltBits, dl,
698  TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
699  Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
700  Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
701  Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
702  break;
703  }
704  Vals.push_back(Lo);
705  }
706 
707  NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
708  Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals);
709  } else {
710  SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
711  // Skip past MERGE_VALUE node if known.
712  if (Scalarized->getOpcode() == ISD::MERGE_VALUES) {
713  NewChain = Scalarized.getOperand(1);
714  Value = Scalarized.getOperand(0);
715  } else {
716  NewChain = Scalarized.getValue(1);
717  Value = Scalarized.getValue(0);
718  }
719  }
720 
721  AddLegalizedOperand(Op.getValue(0), Value);
722  AddLegalizedOperand(Op.getValue(1), NewChain);
723 
724  return (Op.getResNo() ? NewChain : Value);
725 }
726 
727 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
728  StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
729  SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
730  AddLegalizedOperand(Op, TF);
731  return TF;
732 }
733 
734 SDValue VectorLegalizer::Expand(SDValue Op) {
735  switch (Op->getOpcode()) {
737  return ExpandSEXTINREG(Op);
739  return ExpandANY_EXTEND_VECTOR_INREG(Op);
741  return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
743  return ExpandZERO_EXTEND_VECTOR_INREG(Op);
744  case ISD::BSWAP:
745  return ExpandBSWAP(Op);
746  case ISD::VSELECT:
747  return ExpandVSELECT(Op);
748  case ISD::SELECT:
749  return ExpandSELECT(Op);
750  case ISD::FP_TO_UINT:
751  return ExpandFP_TO_UINT(Op);
752  case ISD::UINT_TO_FP:
753  return ExpandUINT_TO_FLOAT(Op);
754  case ISD::FNEG:
755  return ExpandFNEG(Op);
756  case ISD::FSUB:
757  return ExpandFSUB(Op);
758  case ISD::SETCC:
759  return UnrollVSETCC(Op);
760  case ISD::ABS:
761  return ExpandABS(Op);
762  case ISD::BITREVERSE:
763  return ExpandBITREVERSE(Op);
764  case ISD::CTPOP:
765  return ExpandCTPOP(Op);
766  case ISD::CTLZ:
768  return ExpandCTLZ(Op);
769  case ISD::CTTZ:
771  return ExpandCTTZ(Op);
772  case ISD::FSHL:
773  case ISD::FSHR:
774  return ExpandFunnelShift(Op);
775  case ISD::ROTL:
776  case ISD::ROTR:
777  return ExpandROT(Op);
778  case ISD::FMINNUM:
779  case ISD::FMAXNUM:
780  return ExpandFMINNUM_FMAXNUM(Op);
781  case ISD::USUBSAT:
782  case ISD::SSUBSAT:
783  case ISD::UADDSAT:
784  case ISD::SADDSAT:
785  return ExpandAddSubSat(Op);
786  case ISD::STRICT_FADD:
787  case ISD::STRICT_FSUB:
788  case ISD::STRICT_FMUL:
789  case ISD::STRICT_FDIV:
790  case ISD::STRICT_FREM:
791  case ISD::STRICT_FSQRT:
792  case ISD::STRICT_FMA:
793  case ISD::STRICT_FPOW:
794  case ISD::STRICT_FPOWI:
795  case ISD::STRICT_FSIN:
796  case ISD::STRICT_FCOS:
797  case ISD::STRICT_FEXP:
798  case ISD::STRICT_FEXP2:
799  case ISD::STRICT_FLOG:
800  case ISD::STRICT_FLOG10:
801  case ISD::STRICT_FLOG2:
802  case ISD::STRICT_FRINT:
804  case ISD::STRICT_FMAXNUM:
805  case ISD::STRICT_FMINNUM:
806  case ISD::STRICT_FCEIL:
807  case ISD::STRICT_FFLOOR:
808  case ISD::STRICT_FROUND:
809  case ISD::STRICT_FTRUNC:
810  return ExpandStrictFPOp(Op);
811  default:
812  return DAG.UnrollVectorOp(Op.getNode());
813  }
814 }
815 
816 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
817  // Lower a select instruction where the condition is a scalar and the
818  // operands are vectors. Lower this select to VSELECT and implement it
819  // using XOR AND OR. The selector bit is broadcasted.
820  EVT VT = Op.getValueType();
821  SDLoc DL(Op);
822 
823  SDValue Mask = Op.getOperand(0);
824  SDValue Op1 = Op.getOperand(1);
825  SDValue Op2 = Op.getOperand(2);
826 
827  assert(VT.isVector() && !Mask.getValueType().isVector()
828  && Op1.getValueType() == Op2.getValueType() && "Invalid type");
829 
830  // If we can't even use the basic vector operations of
831  // AND,OR,XOR, we will have to scalarize the op.
832  // Notice that the operation may be 'promoted' which means that it is
833  // 'bitcasted' to another type which is handled.
834  // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
835  if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
836  TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
837  TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
838  TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand)
839  return DAG.UnrollVectorOp(Op.getNode());
840 
841  // Generate a mask operand.
843 
844  // What is the size of each element in the vector mask.
845  EVT BitTy = MaskTy.getScalarType();
846 
847  Mask = DAG.getSelect(DL, BitTy, Mask,
848  DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
849  BitTy),
850  DAG.getConstant(0, DL, BitTy));
851 
852  // Broadcast the mask so that the entire vector is all-one or all zero.
853  Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
854 
855  // Bitcast the operands to be the same type as the mask.
856  // This is needed when we select between FP types because
857  // the mask is a vector of integers.
858  Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
859  Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
860 
861  SDValue AllOnes = DAG.getConstant(
862  APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
863  SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
864 
865  Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
866  Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
867  SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
868  return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
869 }
870 
871 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
872  EVT VT = Op.getValueType();
873 
874  // Make sure that the SRA and SHL instructions are available.
875  if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
876  TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
877  return DAG.UnrollVectorOp(Op.getNode());
878 
879  SDLoc DL(Op);
880  EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
881 
882  unsigned BW = VT.getScalarSizeInBits();
883  unsigned OrigBW = OrigTy.getScalarSizeInBits();
884  SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
885 
886  Op = Op.getOperand(0);
887  Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
888  return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
889 }
890 
891 // Generically expand a vector anyext in register to a shuffle of the relevant
892 // lanes into the appropriate locations, with other lanes left undef.
893 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
894  SDLoc DL(Op);
895  EVT VT = Op.getValueType();
896  int NumElements = VT.getVectorNumElements();
897  SDValue Src = Op.getOperand(0);
898  EVT SrcVT = Src.getValueType();
899  int NumSrcElements = SrcVT.getVectorNumElements();
900 
901  // Build a base mask of undef shuffles.
902  SmallVector<int, 16> ShuffleMask;
903  ShuffleMask.resize(NumSrcElements, -1);
904 
905  // Place the extended lanes into the correct locations.
906  int ExtLaneScale = NumSrcElements / NumElements;
907  int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
908  for (int i = 0; i < NumElements; ++i)
909  ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
910 
911  return DAG.getNode(
912  ISD::BITCAST, DL, VT,
913  DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
914 }
915 
916 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
917  SDLoc DL(Op);
918  EVT VT = Op.getValueType();
919  SDValue Src = Op.getOperand(0);
920  EVT SrcVT = Src.getValueType();
921 
922  // First build an any-extend node which can be legalized above when we
923  // recurse through it.
924  Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
925 
926  // Now we need sign extend. Do this by shifting the elements. Even if these
927  // aren't legal operations, they have a better chance of being legalized
928  // without full scalarization than the sign extension does.
929  unsigned EltWidth = VT.getScalarSizeInBits();
930  unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
931  SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
932  return DAG.getNode(ISD::SRA, DL, VT,
933  DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
934  ShiftAmount);
935 }
936 
937 // Generically expand a vector zext in register to a shuffle of the relevant
938 // lanes into the appropriate locations, a blend of zero into the high bits,
939 // and a bitcast to the wider element type.
940 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
941  SDLoc DL(Op);
942  EVT VT = Op.getValueType();
943  int NumElements = VT.getVectorNumElements();
944  SDValue Src = Op.getOperand(0);
945  EVT SrcVT = Src.getValueType();
946  int NumSrcElements = SrcVT.getVectorNumElements();
947 
948  // Build up a zero vector to blend into this one.
949  SDValue Zero = DAG.getConstant(0, DL, SrcVT);
950 
951  // Shuffle the incoming lanes into the correct position, and pull all other
952  // lanes from the zero vector.
953  SmallVector<int, 16> ShuffleMask;
954  ShuffleMask.reserve(NumSrcElements);
955  for (int i = 0; i < NumSrcElements; ++i)
956  ShuffleMask.push_back(i);
957 
958  int ExtLaneScale = NumSrcElements / NumElements;
959  int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
960  for (int i = 0; i < NumElements; ++i)
961  ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
962 
963  return DAG.getNode(ISD::BITCAST, DL, VT,
964  DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
965 }
966 
967 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
968  int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
969  for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
970  for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
971  ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
972 }
973 
974 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
975  EVT VT = Op.getValueType();
976 
977  // Generate a byte wise shuffle mask for the BSWAP.
978  SmallVector<int, 16> ShuffleMask;
979  createBSWAPShuffleMask(VT, ShuffleMask);
980  EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
981 
982  // Only emit a shuffle if the mask is legal.
983  if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
984  return DAG.UnrollVectorOp(Op.getNode());
985 
986  SDLoc DL(Op);
987  Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
988  Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
989  return DAG.getNode(ISD::BITCAST, DL, VT, Op);
990 }
991 
992 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
993  EVT VT = Op.getValueType();
994 
995  // If we have the scalar operation, it's probably cheaper to unroll it.
996  if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
997  return DAG.UnrollVectorOp(Op.getNode());
998 
999  // If the vector element width is a whole number of bytes, test if its legal
1000  // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1001  // vector. This greatly reduces the number of bit shifts necessary.
1002  unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1003  if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1004  SmallVector<int, 16> BSWAPMask;
1005  createBSWAPShuffleMask(VT, BSWAPMask);
1006 
1007  EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1008  if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1009  (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1010  (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1011  TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1012  TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1013  TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1014  SDLoc DL(Op);
1015  Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
1016  Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1017  BSWAPMask);
1018  Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1019  return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1020  }
1021  }
1022 
1023  // If we have the appropriate vector bit operations, it is better to use them
1024  // than unrolling and expanding each component.
1025  if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
1026  !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
1027  !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
1028  !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1029  return DAG.UnrollVectorOp(Op.getNode());
1030 
1031  // Let LegalizeDAG handle this later.
1032  return Op;
1033 }
1034 
1035 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
1036  // Implement VSELECT in terms of XOR, AND, OR
1037  // on platforms which do not support blend natively.
1038  SDLoc DL(Op);
1039 
1040  SDValue Mask = Op.getOperand(0);
1041  SDValue Op1 = Op.getOperand(1);
1042  SDValue Op2 = Op.getOperand(2);
1043 
1044  EVT VT = Mask.getValueType();
1045 
1046  // If we can't even use the basic vector operations of
1047  // AND,OR,XOR, we will have to scalarize the op.
1048  // Notice that the operation may be 'promoted' which means that it is
1049  // 'bitcasted' to another type which is handled.
1050  // This operation also isn't safe with AND, OR, XOR when the boolean
1051  // type is 0/1 as we need an all ones vector constant to mask with.
1052  // FIXME: Sign extend 1 to all ones if thats legal on the target.
1053  if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1054  TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1055  TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1056  TLI.getBooleanContents(Op1.getValueType()) !=
1058  return DAG.UnrollVectorOp(Op.getNode());
1059 
1060  // If the mask and the type are different sizes, unroll the vector op. This
1061  // can occur when getSetCCResultType returns something that is different in
1062  // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1063  if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1064  return DAG.UnrollVectorOp(Op.getNode());
1065 
1066  // Bitcast the operands to be the same type as the mask.
1067  // This is needed when we select between FP types because
1068  // the mask is a vector of integers.
1069  Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1070  Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1071 
1072  SDValue AllOnes = DAG.getConstant(
1074  SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1075 
1076  Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1077  Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1078  SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1079  return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
1080 }
1081 
1082 SDValue VectorLegalizer::ExpandABS(SDValue Op) {
1083  // Attempt to expand using TargetLowering.
1084  SDValue Result;
1085  if (TLI.expandABS(Op.getNode(), Result, DAG))
1086  return Result;
1087 
1088  // Otherwise go ahead and unroll.
1089  return DAG.UnrollVectorOp(Op.getNode());
1090 }
1091 
1092 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) {
1093  // Attempt to expand using TargetLowering.
1094  SDValue Result;
1095  if (TLI.expandFP_TO_UINT(Op.getNode(), Result, DAG))
1096  return Result;
1097 
1098  // Otherwise go ahead and unroll.
1099  return DAG.UnrollVectorOp(Op.getNode());
1100 }
1101 
1102 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
1103  EVT VT = Op.getOperand(0).getValueType();
1104  SDLoc DL(Op);
1105 
1106  // Attempt to expand using TargetLowering.
1107  SDValue Result;
1108  if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG))
1109  return Result;
1110 
1111  // Make sure that the SINT_TO_FP and SRL instructions are available.
1112  if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
1113  TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand)
1114  return DAG.UnrollVectorOp(Op.getNode());
1115 
1116  unsigned BW = VT.getScalarSizeInBits();
1117  assert((BW == 64 || BW == 32) &&
1118  "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1119 
1120  SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1121 
1122  // Constants to clear the upper part of the word.
1123  // Notice that we can also use SHL+SHR, but using a constant is slightly
1124  // faster on x86.
1125  uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1126  SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1127 
1128  // Two to the power of half-word-size.
1129  SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType());
1130 
1131  // Clear upper part of LO, lower HI
1132  SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1133  SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1134 
1135  // Convert hi and lo to floats
1136  // Convert the hi part back to the upper values
1137  // TODO: Can any fast-math-flags be set on these nodes?
1138  SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1139  fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1140  SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1141 
1142  // Add the two halves
1143  return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1144 }
1145 
1146 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1147  if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1148  SDLoc DL(Op);
1149  SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1150  // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1151  return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1152  Zero, Op.getOperand(0));
1153  }
1154  return DAG.UnrollVectorOp(Op.getNode());
1155 }
1156 
1157 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) {
1158  // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1159  // we can defer this to operation legalization where it will be lowered as
1160  // a+(-b).
1161  EVT VT = Op.getValueType();
1162  if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1163  TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1164  return Op; // Defer to LegalizeDAG
1165 
1166  return DAG.UnrollVectorOp(Op.getNode());
1167 }
1168 
1169 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) {
1170  SDValue Result;
1171  if (TLI.expandCTPOP(Op.getNode(), Result, DAG))
1172  return Result;
1173 
1174  return DAG.UnrollVectorOp(Op.getNode());
1175 }
1176 
1177 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) {
1178  SDValue Result;
1179  if (TLI.expandCTLZ(Op.getNode(), Result, DAG))
1180  return Result;
1181 
1182  return DAG.UnrollVectorOp(Op.getNode());
1183 }
1184 
1185 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) {
1186  SDValue Result;
1187  if (TLI.expandCTTZ(Op.getNode(), Result, DAG))
1188  return Result;
1189 
1190  return DAG.UnrollVectorOp(Op.getNode());
1191 }
1192 
1193 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) {
1194  SDValue Result;
1195  if (TLI.expandFunnelShift(Op.getNode(), Result, DAG))
1196  return Result;
1197 
1198  return DAG.UnrollVectorOp(Op.getNode());
1199 }
1200 
1201 SDValue VectorLegalizer::ExpandROT(SDValue Op) {
1202  SDValue Result;
1203  if (TLI.expandROT(Op.getNode(), Result, DAG))
1204  return Result;
1205 
1206  return DAG.UnrollVectorOp(Op.getNode());
1207 }
1208 
1209 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) {
1210  if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG))
1211  return Expanded;
1212  return DAG.UnrollVectorOp(Op.getNode());
1213 }
1214 
1215 SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) {
1216  if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG))
1217  return Expanded;
1218  return DAG.UnrollVectorOp(Op.getNode());
1219 }
1220 
1221 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) {
1222  EVT VT = Op.getValueType();
1223  EVT EltVT = VT.getVectorElementType();
1224  unsigned NumElems = VT.getVectorNumElements();
1225  unsigned NumOpers = Op.getNumOperands();
1226  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1227  EVT ValueVTs[] = {EltVT, MVT::Other};
1228  SDValue Chain = Op.getOperand(0);
1229  SDLoc dl(Op);
1230 
1231  SmallVector<SDValue, 32> OpValues;
1232  SmallVector<SDValue, 32> OpChains;
1233  for (unsigned i = 0; i < NumElems; ++i) {
1235  SDValue Idx = DAG.getConstant(i, dl,
1236  TLI.getVectorIdxTy(DAG.getDataLayout()));
1237 
1238  // The Chain is the first operand.
1239  Opers.push_back(Chain);
1240 
1241  // Now process the remaining operands.
1242  for (unsigned j = 1; j < NumOpers; ++j) {
1243  SDValue Oper = Op.getOperand(j);
1244  EVT OperVT = Oper.getValueType();
1245 
1246  if (OperVT.isVector())
1247  Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1248  EltVT, Oper, Idx);
1249 
1250  Opers.push_back(Oper);
1251  }
1252 
1253  SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers);
1254 
1255  OpValues.push_back(ScalarOp.getValue(0));
1256  OpChains.push_back(ScalarOp.getValue(1));
1257  }
1258 
1259  SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1260  SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1261 
1262  AddLegalizedOperand(Op.getValue(0), Result);
1263  AddLegalizedOperand(Op.getValue(1), NewChain);
1264 
1265  return Op.getResNo() ? NewChain : Result;
1266 }
1267 
1268 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1269  EVT VT = Op.getValueType();
1270  unsigned NumElems = VT.getVectorNumElements();
1271  EVT EltVT = VT.getVectorElementType();
1272  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1273  EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1274  SDLoc dl(Op);
1275  SmallVector<SDValue, 8> Ops(NumElems);
1276  for (unsigned i = 0; i < NumElems; ++i) {
1277  SDValue LHSElem = DAG.getNode(
1278  ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1279  DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1280  SDValue RHSElem = DAG.getNode(
1281  ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1282  DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1283  Ops[i] = DAG.getNode(ISD::SETCC, dl,
1284  TLI.getSetCCResultType(DAG.getDataLayout(),
1285  *DAG.getContext(), TmpEltVT),
1286  LHSElem, RHSElem, CC);
1287  Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1288  DAG.getConstant(APInt::getAllOnesValue
1289  (EltVT.getSizeInBits()), dl, EltVT),
1290  DAG.getConstant(0, dl, EltVT));
1291  }
1292  return DAG.getBuildVector(VT, dl, Ops);
1293 }
1294 
1296  return VectorLegalizer(*this).Run();
1297 }
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition: ISDOpcodes.h:571
X = FP_ROUND(Y, TRUNC) - Rounding &#39;Y&#39; from a larger floating point type down to the precision of the ...
Definition: ISDOpcodes.h:538
FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two values.
Definition: ISDOpcodes.h:594
virtual MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
EVT getValueType() const
Return the ValueType of the referenced return value.
Constrained versions of libm-equivalent floating point intrinsics.
Definition: ISDOpcodes.h:296
static APInt getAllOnesValue(unsigned numBits)
Get the all-ones value.
Definition: APInt.h:562
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
This class represents lattice values for constants.
Definition: AllocatorList.h:24
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0...
Definition: ISDOpcodes.h:605
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition: ValueTypes.h:260
#define LLVM_FALLTHROUGH
Definition: Compiler.h:86
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition: ISDOpcodes.h:519
bool isVector() const
Return true if this is a vector value type.
const SDValue & getBasePtr() const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
const SDValue & getValue() const
bool LegalizeVectors()
This transforms the SelectionDAG into a SelectionDAG that only uses vector math operations supported ...
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
unsigned getVectorNumElements() const
const SDValue & getChain() const
unsigned getAlignment() const
Constrained versions of the binary floating point operators.
Definition: ISDOpcodes.h:289
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition: ISDOpcodes.h:508
[US]{MIN/MAX} - Binary minimum or maximum or signed or unsigned integers.
Definition: ISDOpcodes.h:384
const SDNodeFlags getFlags() const
SDNode * getNode() const
get the SDNode which holds the desired result
void reserve(size_type N)
Definition: SmallVector.h:376
bool isByteSized() const
Return true if the bit size is a multiple of 8.
Definition: ValueTypes.h:212
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
unsigned getValueSizeInBits() const
Returns the size of the value in bits.
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition: ISDOpcodes.h:435
bool isTruncatingStore() const
Return true if the op does a truncation before store.
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
Definition: ISDOpcodes.h:210
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition: ValueTypes.h:136
Shift and rotation operations.
Definition: ISDOpcodes.h:410
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth...
Definition: ISDOpcodes.h:393
RESULT = SMULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same wi...
Definition: ISDOpcodes.h:280
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
unsigned getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition: ValueTypes.h:304
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
This file implements a class to represent arbitrary precision integral constant values and operations...
unsigned getScalarSizeInBits() const
Definition: ValueTypes.h:298
unsigned getSizeInBits() const
Return the size of the specified value type in bits.
Definition: ValueTypes.h:292
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition: ISDOpcodes.h:478
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition: ISDOpcodes.h:429
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:201
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition: ISDOpcodes.h:497
MVT getVectorElementType() const
This class is used to represent ISD::STORE nodes.
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition: ISDOpcodes.h:524
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the specified, possibly variable...
Definition: ISDOpcodes.h:327
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
constexpr uint64_t MinAlign(uint64_t A, uint64_t B)
A and B are either alignments or offsets.
Definition: MathExtras.h:610
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Definition: ValueTypes.h:235
Machine Value Type.
Simple binary floating point operators.
Definition: ISDOpcodes.h:283
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition: ValueTypes.h:273
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
bool isRound() const
Return true if the size is a power-of-two number of bytes.
Definition: ValueTypes.h:217
const SDValue & getOperand(unsigned Num) const
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
Definition: ISDOpcodes.h:934
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition: ISDOpcodes.h:57
Bit counting operators with an undefined result for zero inputs.
Definition: ISDOpcodes.h:416
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition: ISDOpcodes.h:556
Extended Value Type.
Definition: ValueTypes.h:34
size_t size() const
Definition: SmallVector.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition: ISDOpcodes.h:265
TokenFactor - This node takes multiple tokens as input and produces a single token result...
Definition: ISDOpcodes.h:50
const TargetLowering & getTargetLoweringInfo() const
Definition: SelectionDAG.h:404
Iterator for intrusive lists based on ilist_node.
BlockVerifier::State From
Returns platform specific canonical encoding of a floating point number.
Definition: ISDOpcodes.h:319
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition: ISDOpcodes.h:339
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition: ValueTypes.h:265
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:222
X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and rounds it to a floating point val...
Definition: ISDOpcodes.h:553
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
Definition: ValueTypes.h:96
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimum or maximum on two values, following the IEEE-754 2008 definition.
Definition: ISDOpcodes.h:600
Byte Swap and Counting operators.
Definition: ISDOpcodes.h:413
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
MachinePointerInfo getWithOffset(int64_t O) const
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT...
Definition: ValueTypes.h:73
EVT getMemoryVT() const
Return the type of the in-memory value.
Select(COND, TRUEVAL, FALSEVAL).
Definition: ISDOpcodes.h:420
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:468
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:471
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition: ISDOpcodes.h:312
bool isVector() const
Return true if this is a vector value type.
Definition: ValueTypes.h:151
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:387
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition: ISDOpcodes.h:206
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition: ISDOpcodes.h:486
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
Definition: ISDOpcodes.h:614
#define I(x, y, z)
Definition: MD5.cpp:58
Flags getFlags() const
Return the raw flags of the source value,.
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition: ISDOpcodes.h:273
unsigned getOpcode() const
SDValue getValue(unsigned R) const
const MachinePointerInfo & getPointerInfo() const
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
LLVM Value Representation.
Definition: Value.h:73
FMA - Perform a * b + c with no intermediate rounding step.
Definition: ISDOpcodes.h:302
unsigned getResNo() const
get the index which selects a specific result in the SDNode
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:81
SetCC operator - This evaluates to a true value iff the condition is true.
Definition: ISDOpcodes.h:443
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition: ISDOpcodes.h:198
unsigned getNumOperands() const
Conversion operators.
Definition: ISDOpcodes.h:465
const SDValue & getOperand(unsigned i) const
TRUNCATE - Completely drop the high bits.
Definition: ISDOpcodes.h:474
#define LLVM_DEBUG(X)
Definition: Debug.h:123
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation...
Perform various unary floating-point operations inspired by libm.
Definition: ISDOpcodes.h:584
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition: ValueTypes.h:64
static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl< int > &ShuffleMask)
This file describes how to lower LLVM code to machine code.
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition: ISDOpcodes.h:380
void resize(size_type N)
Definition: SmallVector.h:351
This class is used to represent ISD::LOAD nodes.