LLVM  8.0.1
BlockFrequencyInfoImpl.h
Go to the documentation of this file.
1 //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Shared implementation of BlockFrequency for IR and Machine Instructions.
11 // See the documentation below for BlockFrequencyInfoImpl for details.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
16 #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
17 
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/GraphTraits.h"
21 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
27 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/Format.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstddef>
39 #include <cstdint>
40 #include <deque>
41 #include <iterator>
42 #include <limits>
43 #include <list>
44 #include <string>
45 #include <utility>
46 #include <vector>
47 
48 #define DEBUG_TYPE "block-freq"
49 
50 namespace llvm {
51 
52 class BranchProbabilityInfo;
53 class Function;
54 class Loop;
55 class LoopInfo;
56 class MachineBasicBlock;
57 class MachineBranchProbabilityInfo;
58 class MachineFunction;
59 class MachineLoop;
60 class MachineLoopInfo;
61 
62 namespace bfi_detail {
63 
64 struct IrreducibleGraph;
65 
66 // This is part of a workaround for a GCC 4.7 crash on lambdas.
67 template <class BT> struct BlockEdgesAdder;
68 
69 /// Mass of a block.
70 ///
71 /// This class implements a sort of fixed-point fraction always between 0.0 and
72 /// 1.0. getMass() == std::numeric_limits<uint64_t>::max() indicates a value of
73 /// 1.0.
74 ///
75 /// Masses can be added and subtracted. Simple saturation arithmetic is used,
76 /// so arithmetic operations never overflow or underflow.
77 ///
78 /// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses
79 /// an inexpensive floating-point algorithm that's off-by-one (almost, but not
80 /// quite, maximum precision).
81 ///
82 /// Masses can be scaled by \a BranchProbability at maximum precision.
83 class BlockMass {
84  uint64_t Mass = 0;
85 
86 public:
87  BlockMass() = default;
88  explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
89 
90  static BlockMass getEmpty() { return BlockMass(); }
91 
92  static BlockMass getFull() {
94  }
95 
96  uint64_t getMass() const { return Mass; }
97 
98  bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); }
99  bool isEmpty() const { return !Mass; }
100 
101  bool operator!() const { return isEmpty(); }
102 
103  /// Add another mass.
104  ///
105  /// Adds another mass, saturating at \a isFull() rather than overflowing.
107  uint64_t Sum = Mass + X.Mass;
109  return *this;
110  }
111 
112  /// Subtract another mass.
113  ///
114  /// Subtracts another mass, saturating at \a isEmpty() rather than
115  /// undeflowing.
117  uint64_t Diff = Mass - X.Mass;
118  Mass = Diff > Mass ? 0 : Diff;
119  return *this;
120  }
121 
123  Mass = P.scale(Mass);
124  return *this;
125  }
126 
127  bool operator==(BlockMass X) const { return Mass == X.Mass; }
128  bool operator!=(BlockMass X) const { return Mass != X.Mass; }
129  bool operator<=(BlockMass X) const { return Mass <= X.Mass; }
130  bool operator>=(BlockMass X) const { return Mass >= X.Mass; }
131  bool operator<(BlockMass X) const { return Mass < X.Mass; }
132  bool operator>(BlockMass X) const { return Mass > X.Mass; }
133 
134  /// Convert to scaled number.
135  ///
136  /// Convert to \a ScaledNumber. \a isFull() gives 1.0, while \a isEmpty()
137  /// gives slightly above 0.0.
139 
140  void dump() const;
141  raw_ostream &print(raw_ostream &OS) const;
142 };
143 
145  return BlockMass(L) += R;
146 }
148  return BlockMass(L) -= R;
149 }
151  return BlockMass(L) *= R;
152 }
154  return BlockMass(R) *= L;
155 }
156 
158  return X.print(OS);
159 }
160 
161 } // end namespace bfi_detail
162 
163 template <> struct isPodLike<bfi_detail::BlockMass> {
164  static const bool value = true;
165 };
166 
167 /// Base class for BlockFrequencyInfoImpl
168 ///
169 /// BlockFrequencyInfoImplBase has supporting data structures and some
170 /// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on
171 /// the block type (or that call such algorithms) are skipped here.
172 ///
173 /// Nevertheless, the majority of the overall algorithm documention lives with
174 /// BlockFrequencyInfoImpl. See there for details.
176 public:
179 
180  /// Representative of a block.
181  ///
182  /// This is a simple wrapper around an index into the reverse-post-order
183  /// traversal of the blocks.
184  ///
185  /// Unlike a block pointer, its order has meaning (location in the
186  /// topological sort) and it's class is the same regardless of block type.
187  struct BlockNode {
189 
191 
192  BlockNode() = default;
193  BlockNode(IndexType Index) : Index(Index) {}
194 
195  bool operator==(const BlockNode &X) const { return Index == X.Index; }
196  bool operator!=(const BlockNode &X) const { return Index != X.Index; }
197  bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
198  bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
199  bool operator<(const BlockNode &X) const { return Index < X.Index; }
200  bool operator>(const BlockNode &X) const { return Index > X.Index; }
201 
202  bool isValid() const { return Index <= getMaxIndex(); }
203 
204  static size_t getMaxIndex() {
206  }
207  };
208 
209  /// Stats about a block itself.
210  struct FrequencyData {
212  uint64_t Integer;
213  };
214 
215  /// Data about a loop.
216  ///
217  /// Contains the data necessary to represent a loop as a pseudo-node once it's
218  /// packaged.
219  struct LoopData {
223 
224  LoopData *Parent; ///< The parent loop.
225  bool IsPackaged = false; ///< Whether this has been packaged.
226  uint32_t NumHeaders = 1; ///< Number of headers.
227  ExitMap Exits; ///< Successor edges (and weights).
228  NodeList Nodes; ///< Header and the members of the loop.
229  HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
232 
233  LoopData(LoopData *Parent, const BlockNode &Header)
234  : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {}
235 
236  template <class It1, class It2>
237  LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
238  It2 LastOther)
239  : Parent(Parent), Nodes(FirstHeader, LastHeader) {
240  NumHeaders = Nodes.size();
241  Nodes.insert(Nodes.end(), FirstOther, LastOther);
242  BackedgeMass.resize(NumHeaders);
243  }
244 
245  bool isHeader(const BlockNode &Node) const {
246  if (isIrreducible())
247  return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
248  Node);
249  return Node == Nodes[0];
250  }
251 
252  BlockNode getHeader() const { return Nodes[0]; }
253  bool isIrreducible() const { return NumHeaders > 1; }
254 
256  assert(isHeader(B) && "this is only valid on loop header blocks");
257  if (isIrreducible())
258  return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
259  Nodes.begin();
260  return 0;
261  }
262 
264  return Nodes.begin() + NumHeaders;
265  }
266 
267  NodeList::const_iterator members_end() const { return Nodes.end(); }
269  return make_range(members_begin(), members_end());
270  }
271  };
272 
273  /// Index of loop information.
274  struct WorkingData {
275  BlockNode Node; ///< This node.
276  LoopData *Loop = nullptr; ///< The loop this block is inside.
277  BlockMass Mass; ///< Mass distribution from the entry block.
278 
279  WorkingData(const BlockNode &Node) : Node(Node) {}
280 
281  bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
282 
283  bool isDoubleLoopHeader() const {
284  return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
285  Loop->Parent->isHeader(Node);
286  }
287 
289  if (!isLoopHeader())
290  return Loop;
291  if (!isDoubleLoopHeader())
292  return Loop->Parent;
293  return Loop->Parent->Parent;
294  }
295 
296  /// Resolve a node to its representative.
297  ///
298  /// Get the node currently representing Node, which could be a containing
299  /// loop.
300  ///
301  /// This function should only be called when distributing mass. As long as
302  /// there are no irreducible edges to Node, then it will have complexity
303  /// O(1) in this context.
304  ///
305  /// In general, the complexity is O(L), where L is the number of loop
306  /// headers Node has been packaged into. Since this method is called in
307  /// the context of distributing mass, L will be the number of loop headers
308  /// an early exit edge jumps out of.
310  auto L = getPackagedLoop();
311  return L ? L->getHeader() : Node;
312  }
313 
315  if (!Loop || !Loop->IsPackaged)
316  return nullptr;
317  auto L = Loop;
318  while (L->Parent && L->Parent->IsPackaged)
319  L = L->Parent;
320  return L;
321  }
322 
323  /// Get the appropriate mass for a node.
324  ///
325  /// Get appropriate mass for Node. If Node is a loop-header (whose loop
326  /// has been packaged), returns the mass of its pseudo-node. If it's a
327  /// node inside a packaged loop, it returns the loop's mass.
329  if (!isAPackage())
330  return Mass;
331  if (!isADoublePackage())
332  return Loop->Mass;
333  return Loop->Parent->Mass;
334  }
335 
336  /// Has ContainingLoop been packaged up?
337  bool isPackaged() const { return getResolvedNode() != Node; }
338 
339  /// Has Loop been packaged up?
340  bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
341 
342  /// Has Loop been packaged up twice?
343  bool isADoublePackage() const {
344  return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
345  }
346  };
347 
348  /// Unscaled probability weight.
349  ///
350  /// Probability weight for an edge in the graph (including the
351  /// successor/target node).
352  ///
353  /// All edges in the original function are 32-bit. However, exit edges from
354  /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
355  /// space in general.
356  ///
357  /// In addition to the raw weight amount, Weight stores the type of the edge
358  /// in the current context (i.e., the context of the loop being processed).
359  /// Is this a local edge within the loop, an exit from the loop, or a
360  /// backedge to the loop header?
361  struct Weight {
362  enum DistType { Local, Exit, Backedge };
363  DistType Type = Local;
365  uint64_t Amount = 0;
366 
367  Weight() = default;
368  Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
369  : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
370  };
371 
372  /// Distribution of unscaled probability weight.
373  ///
374  /// Distribution of unscaled probability weight to a set of successors.
375  ///
376  /// This class collates the successor edge weights for later processing.
377  ///
378  /// \a DidOverflow indicates whether \a Total did overflow while adding to
379  /// the distribution. It should never overflow twice.
380  struct Distribution {
382 
383  WeightList Weights; ///< Individual successor weights.
384  uint64_t Total = 0; ///< Sum of all weights.
385  bool DidOverflow = false; ///< Whether \a Total did overflow.
386 
387  Distribution() = default;
388 
389  void addLocal(const BlockNode &Node, uint64_t Amount) {
390  add(Node, Amount, Weight::Local);
391  }
392 
393  void addExit(const BlockNode &Node, uint64_t Amount) {
394  add(Node, Amount, Weight::Exit);
395  }
396 
397  void addBackedge(const BlockNode &Node, uint64_t Amount) {
398  add(Node, Amount, Weight::Backedge);
399  }
400 
401  /// Normalize the distribution.
402  ///
403  /// Combines multiple edges to the same \a Weight::TargetNode and scales
404  /// down so that \a Total fits into 32-bits.
405  ///
406  /// This is linear in the size of \a Weights. For the vast majority of
407  /// cases, adjacent edge weights are combined by sorting WeightList and
408  /// combining adjacent weights. However, for very large edge lists an
409  /// auxiliary hash table is used.
410  void normalize();
411 
412  private:
413  void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
414  };
415 
416  /// Data about each block. This is used downstream.
417  std::vector<FrequencyData> Freqs;
418 
419  /// Whether each block is an irreducible loop header.
420  /// This is used downstream.
422 
423  /// Loop data: see initializeLoops().
424  std::vector<WorkingData> Working;
425 
426  /// Indexed information about loops.
427  std::list<LoopData> Loops;
428 
429  /// Virtual destructor.
430  ///
431  /// Need a virtual destructor to mask the compiler warning about
432  /// getBlockName().
433  virtual ~BlockFrequencyInfoImplBase() = default;
434 
435  /// Add all edges out of a packaged loop to the distribution.
436  ///
437  /// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each
438  /// successor edge.
439  ///
440  /// \return \c true unless there's an irreducible backedge.
441  bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
442  Distribution &Dist);
443 
444  /// Add an edge to the distribution.
445  ///
446  /// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the
447  /// edge is local/exit/backedge is in the context of LoopHead. Otherwise,
448  /// every edge should be a local edge (since all the loops are packaged up).
449  ///
450  /// \return \c true unless aborted due to an irreducible backedge.
451  bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
452  const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
453 
455  assert(Head.Index < Working.size());
456  assert(Working[Head.Index].isLoopHeader());
457  return *Working[Head.Index].Loop;
458  }
459 
460  /// Analyze irreducible SCCs.
461  ///
462  /// Separate irreducible SCCs from \c G, which is an explict graph of \c
463  /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
464  /// Insert them into \a Loops before \c Insert.
465  ///
466  /// \return the \c LoopData nodes representing the irreducible SCCs.
468  analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
469  std::list<LoopData>::iterator Insert);
470 
471  /// Update a loop after packaging irreducible SCCs inside of it.
472  ///
473  /// Update \c OuterLoop. Before finding irreducible control flow, it was
474  /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
475  /// LoopData::BackedgeMass need to be reset. Also, nodes that were packaged
476  /// up need to be removed from \a OuterLoop::Nodes.
477  void updateLoopWithIrreducible(LoopData &OuterLoop);
478 
479  /// Distribute mass according to a distribution.
480  ///
481  /// Distributes the mass in Source according to Dist. If LoopHead.isValid(),
482  /// backedges and exits are stored in its entry in Loops.
483  ///
484  /// Mass is distributed in parallel from two copies of the source mass.
485  void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
486  Distribution &Dist);
487 
488  /// Compute the loop scale for a loop.
489  void computeLoopScale(LoopData &Loop);
490 
491  /// Adjust the mass of all headers in an irreducible loop.
492  ///
493  /// Initially, irreducible loops are assumed to distribute their mass
494  /// equally among its headers. This can lead to wrong frequency estimates
495  /// since some headers may be executed more frequently than others.
496  ///
497  /// This adjusts header mass distribution so it matches the weights of
498  /// the backedges going into each of the loop headers.
499  void adjustLoopHeaderMass(LoopData &Loop);
500 
501  void distributeIrrLoopHeaderMass(Distribution &Dist);
502 
503  /// Package up a loop.
504  void packageLoop(LoopData &Loop);
505 
506  /// Unwrap loops.
507  void unwrapLoops();
508 
509  /// Finalize frequency metrics.
510  ///
511  /// Calculates final frequencies and cleans up no-longer-needed data
512  /// structures.
513  void finalizeMetrics();
514 
515  /// Clear all memory.
516  void clear();
517 
518  virtual std::string getBlockName(const BlockNode &Node) const;
519  std::string getLoopName(const LoopData &Loop) const;
520 
521  virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
522  void dump() const { print(dbgs()); }
523 
524  Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
525 
526  BlockFrequency getBlockFreq(const BlockNode &Node) const;
527  Optional<uint64_t> getBlockProfileCount(const Function &F,
528  const BlockNode &Node) const;
529  Optional<uint64_t> getProfileCountFromFreq(const Function &F,
530  uint64_t Freq) const;
531  bool isIrrLoopHeader(const BlockNode &Node);
532 
533  void setBlockFreq(const BlockNode &Node, uint64_t Freq);
534 
535  raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
536  raw_ostream &printBlockFreq(raw_ostream &OS,
537  const BlockFrequency &Freq) const;
538 
539  uint64_t getEntryFreq() const {
540  assert(!Freqs.empty());
541  return Freqs[0].Integer;
542  }
543 };
544 
545 namespace bfi_detail {
546 
547 template <class BlockT> struct TypeMap {};
548 template <> struct TypeMap<BasicBlock> {
552  using LoopT = Loop;
554 };
555 template <> struct TypeMap<MachineBasicBlock> {
561 };
562 
563 /// Get the name of a MachineBasicBlock.
564 ///
565 /// Get the name of a MachineBasicBlock. It's templated so that including from
566 /// CodeGen is unnecessary (that would be a layering issue).
567 ///
568 /// This is used mainly for debug output. The name is similar to
569 /// MachineBasicBlock::getFullName(), but skips the name of the function.
570 template <class BlockT> std::string getBlockName(const BlockT *BB) {
571  assert(BB && "Unexpected nullptr");
572  auto MachineName = "BB" + Twine(BB->getNumber());
573  if (BB->getBasicBlock())
574  return (MachineName + "[" + BB->getName() + "]").str();
575  return MachineName.str();
576 }
577 /// Get the name of a BasicBlock.
578 template <> inline std::string getBlockName(const BasicBlock *BB) {
579  assert(BB && "Unexpected nullptr");
580  return BB->getName().str();
581 }
582 
583 /// Graph of irreducible control flow.
584 ///
585 /// This graph is used for determining the SCCs in a loop (or top-level
586 /// function) that has irreducible control flow.
587 ///
588 /// During the block frequency algorithm, the local graphs are defined in a
589 /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
590 /// graphs for most edges, but getting others from \a LoopData::ExitMap. The
591 /// latter only has successor information.
592 ///
593 /// \a IrreducibleGraph makes this graph explicit. It's in a form that can use
594 /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
595 /// and it explicitly lists predecessors and successors. The initialization
596 /// that relies on \c MachineBasicBlock is defined in the header.
599 
601 
603  struct IrrNode {
605  unsigned NumIn = 0;
606  std::deque<const IrrNode *> Edges;
607 
608  IrrNode(const BlockNode &Node) : Node(Node) {}
609 
610  using iterator = std::deque<const IrrNode *>::const_iterator;
611 
612  iterator pred_begin() const { return Edges.begin(); }
613  iterator succ_begin() const { return Edges.begin() + NumIn; }
614  iterator pred_end() const { return succ_begin(); }
615  iterator succ_end() const { return Edges.end(); }
616  };
618  const IrrNode *StartIrr = nullptr;
619  std::vector<IrrNode> Nodes;
621 
622  /// Construct an explicit graph containing irreducible control flow.
623  ///
624  /// Construct an explicit graph of the control flow in \c OuterLoop (or the
625  /// top-level function, if \c OuterLoop is \c nullptr). Uses \c
626  /// addBlockEdges to add block successors that have not been packaged into
627  /// loops.
628  ///
629  /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
630  /// user of this.
631  template <class BlockEdgesAdder>
633  BlockEdgesAdder addBlockEdges) : BFI(BFI) {
634  initialize(OuterLoop, addBlockEdges);
635  }
636 
637  template <class BlockEdgesAdder>
638  void initialize(const BFIBase::LoopData *OuterLoop,
639  BlockEdgesAdder addBlockEdges);
640  void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
641  void addNodesInFunction();
642 
643  void addNode(const BlockNode &Node) {
644  Nodes.emplace_back(Node);
645  BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
646  }
647 
648  void indexNodes();
649  template <class BlockEdgesAdder>
650  void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
651  BlockEdgesAdder addBlockEdges);
652  void addEdge(IrrNode &Irr, const BlockNode &Succ,
653  const BFIBase::LoopData *OuterLoop);
654 };
655 
656 template <class BlockEdgesAdder>
658  BlockEdgesAdder addBlockEdges) {
659  if (OuterLoop) {
660  addNodesInLoop(*OuterLoop);
661  for (auto N : OuterLoop->Nodes)
662  addEdges(N, OuterLoop, addBlockEdges);
663  } else {
664  addNodesInFunction();
665  for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
666  addEdges(Index, OuterLoop, addBlockEdges);
667  }
668  StartIrr = Lookup[Start.Index];
669 }
670 
671 template <class BlockEdgesAdder>
673  const BFIBase::LoopData *OuterLoop,
674  BlockEdgesAdder addBlockEdges) {
675  auto L = Lookup.find(Node.Index);
676  if (L == Lookup.end())
677  return;
678  IrrNode &Irr = *L->second;
679  const auto &Working = BFI.Working[Node.Index];
680 
681  if (Working.isAPackage())
682  for (const auto &I : Working.Loop->Exits)
683  addEdge(Irr, I.first, OuterLoop);
684  else
685  addBlockEdges(*this, Irr, OuterLoop);
686 }
687 
688 } // end namespace bfi_detail
689 
690 /// Shared implementation for block frequency analysis.
691 ///
692 /// This is a shared implementation of BlockFrequencyInfo and
693 /// MachineBlockFrequencyInfo, and calculates the relative frequencies of
694 /// blocks.
695 ///
696 /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
697 /// which is called the header. A given loop, L, can have sub-loops, which are
698 /// loops within the subgraph of L that exclude its header. (A "trivial" SCC
699 /// consists of a single block that does not have a self-edge.)
700 ///
701 /// In addition to loops, this algorithm has limited support for irreducible
702 /// SCCs, which are SCCs with multiple entry blocks. Irreducible SCCs are
703 /// discovered on they fly, and modelled as loops with multiple headers.
704 ///
705 /// The headers of irreducible sub-SCCs consist of its entry blocks and all
706 /// nodes that are targets of a backedge within it (excluding backedges within
707 /// true sub-loops). Block frequency calculations act as if a block is
708 /// inserted that intercepts all the edges to the headers. All backedges and
709 /// entries point to this block. Its successors are the headers, which split
710 /// the frequency evenly.
711 ///
712 /// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
713 /// separates mass distribution from loop scaling, and dithers to eliminate
714 /// probability mass loss.
715 ///
716 /// The implementation is split between BlockFrequencyInfoImpl, which knows the
717 /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
718 /// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a
719 /// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in
720 /// reverse-post order. This gives two advantages: it's easy to compare the
721 /// relative ordering of two nodes, and maps keyed on BlockT can be represented
722 /// by vectors.
723 ///
724 /// This algorithm is O(V+E), unless there is irreducible control flow, in
725 /// which case it's O(V*E) in the worst case.
726 ///
727 /// These are the main stages:
728 ///
729 /// 0. Reverse post-order traversal (\a initializeRPOT()).
730 ///
731 /// Run a single post-order traversal and save it (in reverse) in RPOT.
732 /// All other stages make use of this ordering. Save a lookup from BlockT
733 /// to BlockNode (the index into RPOT) in Nodes.
734 ///
735 /// 1. Loop initialization (\a initializeLoops()).
736 ///
737 /// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
738 /// the algorithm. In particular, store the immediate members of each loop
739 /// in reverse post-order.
740 ///
741 /// 2. Calculate mass and scale in loops (\a computeMassInLoops()).
742 ///
743 /// For each loop (bottom-up), distribute mass through the DAG resulting
744 /// from ignoring backedges and treating sub-loops as a single pseudo-node.
745 /// Track the backedge mass distributed to the loop header, and use it to
746 /// calculate the loop scale (number of loop iterations). Immediate
747 /// members that represent sub-loops will already have been visited and
748 /// packaged into a pseudo-node.
749 ///
750 /// Distributing mass in a loop is a reverse-post-order traversal through
751 /// the loop. Start by assigning full mass to the Loop header. For each
752 /// node in the loop:
753 ///
754 /// - Fetch and categorize the weight distribution for its successors.
755 /// If this is a packaged-subloop, the weight distribution is stored
756 /// in \a LoopData::Exits. Otherwise, fetch it from
757 /// BranchProbabilityInfo.
758 ///
759 /// - Each successor is categorized as \a Weight::Local, a local edge
760 /// within the current loop, \a Weight::Backedge, a backedge to the
761 /// loop header, or \a Weight::Exit, any successor outside the loop.
762 /// The weight, the successor, and its category are stored in \a
763 /// Distribution. There can be multiple edges to each successor.
764 ///
765 /// - If there's a backedge to a non-header, there's an irreducible SCC.
766 /// The usual flow is temporarily aborted. \a
767 /// computeIrreducibleMass() finds the irreducible SCCs within the
768 /// loop, packages them up, and restarts the flow.
769 ///
770 /// - Normalize the distribution: scale weights down so that their sum
771 /// is 32-bits, and coalesce multiple edges to the same node.
772 ///
773 /// - Distribute the mass accordingly, dithering to minimize mass loss,
774 /// as described in \a distributeMass().
775 ///
776 /// In the case of irreducible loops, instead of a single loop header,
777 /// there will be several. The computation of backedge masses is similar
778 /// but instead of having a single backedge mass, there will be one
779 /// backedge per loop header. In these cases, each backedge will carry
780 /// a mass proportional to the edge weights along the corresponding
781 /// path.
782 ///
783 /// At the end of propagation, the full mass assigned to the loop will be
784 /// distributed among the loop headers proportionally according to the
785 /// mass flowing through their backedges.
786 ///
787 /// Finally, calculate the loop scale from the accumulated backedge mass.
788 ///
789 /// 3. Distribute mass in the function (\a computeMassInFunction()).
790 ///
791 /// Finally, distribute mass through the DAG resulting from packaging all
792 /// loops in the function. This uses the same algorithm as distributing
793 /// mass in a loop, except that there are no exit or backedge edges.
794 ///
795 /// 4. Unpackage loops (\a unwrapLoops()).
796 ///
797 /// Initialize each block's frequency to a floating point representation of
798 /// its mass.
799 ///
800 /// Visit loops top-down, scaling the frequencies of its immediate members
801 /// by the loop's pseudo-node's frequency.
802 ///
803 /// 5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
804 ///
805 /// Using the min and max frequencies as a guide, translate floating point
806 /// frequencies to an appropriate range in uint64_t.
807 ///
808 /// It has some known flaws.
809 ///
810 /// - The model of irreducible control flow is a rough approximation.
811 ///
812 /// Modelling irreducible control flow exactly involves setting up and
813 /// solving a group of infinite geometric series. Such precision is
814 /// unlikely to be worthwhile, since most of our algorithms give up on
815 /// irreducible control flow anyway.
816 ///
817 /// Nevertheless, we might find that we need to get closer. Here's a sort
818 /// of TODO list for the model with diminishing returns, to be completed as
819 /// necessary.
820 ///
821 /// - The headers for the \a LoopData representing an irreducible SCC
822 /// include non-entry blocks. When these extra blocks exist, they
823 /// indicate a self-contained irreducible sub-SCC. We could treat them
824 /// as sub-loops, rather than arbitrarily shoving the problematic
825 /// blocks into the headers of the main irreducible SCC.
826 ///
827 /// - Entry frequencies are assumed to be evenly split between the
828 /// headers of a given irreducible SCC, which is the only option if we
829 /// need to compute mass in the SCC before its parent loop. Instead,
830 /// we could partially compute mass in the parent loop, and stop when
831 /// we get to the SCC. Here, we have the correct ratio of entry
832 /// masses, which we can use to adjust their relative frequencies.
833 /// Compute mass in the SCC, and then continue propagation in the
834 /// parent.
835 ///
836 /// - We can propagate mass iteratively through the SCC, for some fixed
837 /// number of iterations. Each iteration starts by assigning the entry
838 /// blocks their backedge mass from the prior iteration. The final
839 /// mass for each block (and each exit, and the total backedge mass
840 /// used for computing loop scale) is the sum of all iterations.
841 /// (Running this until fixed point would "solve" the geometric
842 /// series by simulation.)
843 template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
844  // This is part of a workaround for a GCC 4.7 crash on lambdas.
846 
847  using BlockT = typename bfi_detail::TypeMap<BT>::BlockT;
848  using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT;
849  using BranchProbabilityInfoT =
851  using LoopT = typename bfi_detail::TypeMap<BT>::LoopT;
852  using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT;
855 
856  const BranchProbabilityInfoT *BPI = nullptr;
857  const LoopInfoT *LI = nullptr;
858  const FunctionT *F = nullptr;
859 
860  // All blocks in reverse postorder.
861  std::vector<const BlockT *> RPOT;
863 
864  using rpot_iterator = typename std::vector<const BlockT *>::const_iterator;
865 
866  rpot_iterator rpot_begin() const { return RPOT.begin(); }
867  rpot_iterator rpot_end() const { return RPOT.end(); }
868 
869  size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
870 
871  BlockNode getNode(const rpot_iterator &I) const {
872  return BlockNode(getIndex(I));
873  }
874  BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }
875 
876  const BlockT *getBlock(const BlockNode &Node) const {
877  assert(Node.Index < RPOT.size());
878  return RPOT[Node.Index];
879  }
880 
881  /// Run (and save) a post-order traversal.
882  ///
883  /// Saves a reverse post-order traversal of all the nodes in \a F.
884  void initializeRPOT();
885 
886  /// Initialize loop data.
887  ///
888  /// Build up \a Loops using \a LoopInfo. \a LoopInfo gives us a mapping from
889  /// each block to the deepest loop it's in, but we need the inverse. For each
890  /// loop, we store in reverse post-order its "immediate" members, defined as
891  /// the header, the headers of immediate sub-loops, and all other blocks in
892  /// the loop that are not in sub-loops.
893  void initializeLoops();
894 
895  /// Propagate to a block's successors.
896  ///
897  /// In the context of distributing mass through \c OuterLoop, divide the mass
898  /// currently assigned to \c Node between its successors.
899  ///
900  /// \return \c true unless there's an irreducible backedge.
901  bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
902 
903  /// Compute mass in a particular loop.
904  ///
905  /// Assign mass to \c Loop's header, and then for each block in \c Loop in
906  /// reverse post-order, distribute mass to its successors. Only visits nodes
907  /// that have not been packaged into sub-loops.
908  ///
909  /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
910  /// \return \c true unless there's an irreducible backedge.
911  bool computeMassInLoop(LoopData &Loop);
912 
913  /// Try to compute mass in the top-level function.
914  ///
915  /// Assign mass to the entry block, and then for each block in reverse
916  /// post-order, distribute mass to its successors. Skips nodes that have
917  /// been packaged into loops.
918  ///
919  /// \pre \a computeMassInLoops() has been called.
920  /// \return \c true unless there's an irreducible backedge.
921  bool tryToComputeMassInFunction();
922 
923  /// Compute mass in (and package up) irreducible SCCs.
924  ///
925  /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
926  /// of \c Insert), and call \a computeMassInLoop() on each of them.
927  ///
928  /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
929  ///
930  /// \pre \a computeMassInLoop() has been called for each subloop of \c
931  /// OuterLoop.
932  /// \pre \c Insert points at the last loop successfully processed by \a
933  /// computeMassInLoop().
934  /// \pre \c OuterLoop has irreducible SCCs.
935  void computeIrreducibleMass(LoopData *OuterLoop,
936  std::list<LoopData>::iterator Insert);
937 
938  /// Compute mass in all loops.
939  ///
940  /// For each loop bottom-up, call \a computeMassInLoop().
941  ///
942  /// \a computeMassInLoop() aborts (and returns \c false) on loops that
943  /// contain a irreducible sub-SCCs. Use \a computeIrreducibleMass() and then
944  /// re-enter \a computeMassInLoop().
945  ///
946  /// \post \a computeMassInLoop() has returned \c true for every loop.
947  void computeMassInLoops();
948 
949  /// Compute mass in the top-level function.
950  ///
951  /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
952  /// compute mass in the top-level function.
953  ///
954  /// \post \a tryToComputeMassInFunction() has returned \c true.
955  void computeMassInFunction();
956 
957  std::string getBlockName(const BlockNode &Node) const override {
958  return bfi_detail::getBlockName(getBlock(Node));
959  }
960 
961 public:
962  BlockFrequencyInfoImpl() = default;
963 
964  const FunctionT *getFunction() const { return F; }
965 
966  void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI,
967  const LoopInfoT &LI);
968 
970 
971  BlockFrequency getBlockFreq(const BlockT *BB) const {
972  return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
973  }
974 
976  const BlockT *BB) const {
978  }
979 
981  uint64_t Freq) const {
983  }
984 
985  bool isIrrLoopHeader(const BlockT *BB) {
987  }
988 
989  void setBlockFreq(const BlockT *BB, uint64_t Freq);
990 
991  Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
993  }
994 
995  const BranchProbabilityInfoT &getBPI() const { return *BPI; }
996 
997  /// Print the frequencies for the current function.
998  ///
999  /// Prints the frequencies for the blocks in the current function.
1000  ///
1001  /// Blocks are printed in the natural iteration order of the function, rather
1002  /// than reverse post-order. This provides two advantages: writing -analyze
1003  /// tests is easier (since blocks come out in source order), and even
1004  /// unreachable blocks are printed.
1005  ///
1006  /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
1007  /// we need to override it here.
1008  raw_ostream &print(raw_ostream &OS) const override;
1009 
1012 
1013  raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
1014  return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
1015  }
1016 };
1017 
1018 template <class BT>
1020  const BranchProbabilityInfoT &BPI,
1021  const LoopInfoT &LI) {
1022  // Save the parameters.
1023  this->BPI = &BPI;
1024  this->LI = &LI;
1025  this->F = &F;
1026 
1027  // Clean up left-over data structures.
1029  RPOT.clear();
1030  Nodes.clear();
1031 
1032  // Initialize.
1033  LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName()
1034  << "\n================="
1035  << std::string(F.getName().size(), '=') << "\n");
1036  initializeRPOT();
1037  initializeLoops();
1038 
1039  // Visit loops in post-order to find the local mass distribution, and then do
1040  // the full function.
1041  computeMassInLoops();
1042  computeMassInFunction();
1043  unwrapLoops();
1044  finalizeMetrics();
1045 }
1046 
1047 template <class BT>
1048 void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) {
1049  if (Nodes.count(BB))
1050  BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq);
1051  else {
1052  // If BB is a newly added block after BFI is done, we need to create a new
1053  // BlockNode for it assigned with a new index. The index can be determined
1054  // by the size of Freqs.
1055  BlockNode NewNode(Freqs.size());
1056  Nodes[BB] = NewNode;
1057  Freqs.emplace_back();
1059  }
1060 }
1061 
1062 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
1063  const BlockT *Entry = &F->front();
1064  RPOT.reserve(F->size());
1065  std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
1066  std::reverse(RPOT.begin(), RPOT.end());
1067 
1068  assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
1069  "More nodes in function than Block Frequency Info supports");
1070 
1071  LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n");
1072  for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
1073  BlockNode Node = getNode(I);
1074  LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node)
1075  << "\n");
1076  Nodes[*I] = Node;
1077  }
1078 
1079  Working.reserve(RPOT.size());
1080  for (size_t Index = 0; Index < RPOT.size(); ++Index)
1081  Working.emplace_back(Index);
1082  Freqs.resize(RPOT.size());
1083 }
1084 
1085 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
1086  LLVM_DEBUG(dbgs() << "loop-detection\n");
1087  if (LI->empty())
1088  return;
1089 
1090  // Visit loops top down and assign them an index.
1091  std::deque<std::pair<const LoopT *, LoopData *>> Q;
1092  for (const LoopT *L : *LI)
1093  Q.emplace_back(L, nullptr);
1094  while (!Q.empty()) {
1095  const LoopT *Loop = Q.front().first;
1096  LoopData *Parent = Q.front().second;
1097  Q.pop_front();
1098 
1099  BlockNode Header = getNode(Loop->getHeader());
1100  assert(Header.isValid());
1101 
1102  Loops.emplace_back(Parent, Header);
1103  Working[Header.Index].Loop = &Loops.back();
1104  LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
1105 
1106  for (const LoopT *L : *Loop)
1107  Q.emplace_back(L, &Loops.back());
1108  }
1109 
1110  // Visit nodes in reverse post-order and add them to their deepest containing
1111  // loop.
1112  for (size_t Index = 0; Index < RPOT.size(); ++Index) {
1113  // Loop headers have already been mostly mapped.
1114  if (Working[Index].isLoopHeader()) {
1115  LoopData *ContainingLoop = Working[Index].getContainingLoop();
1116  if (ContainingLoop)
1117  ContainingLoop->Nodes.push_back(Index);
1118  continue;
1119  }
1120 
1121  const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
1122  if (!Loop)
1123  continue;
1124 
1125  // Add this node to its containing loop's member list.
1126  BlockNode Header = getNode(Loop->getHeader());
1127  assert(Header.isValid());
1128  const auto &HeaderData = Working[Header.Index];
1129  assert(HeaderData.isLoopHeader());
1130 
1131  Working[Index].Loop = HeaderData.Loop;
1132  HeaderData.Loop->Nodes.push_back(Index);
1133  LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header)
1134  << ": member = " << getBlockName(Index) << "\n");
1135  }
1136 }
1137 
1138 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
1139  // Visit loops with the deepest first, and the top-level loops last.
1140  for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1141  if (computeMassInLoop(*L))
1142  continue;
1143  auto Next = std::next(L);
1144  computeIrreducibleMass(&*L, L.base());
1145  L = std::prev(Next);
1146  if (computeMassInLoop(*L))
1147  continue;
1148  llvm_unreachable("unhandled irreducible control flow");
1149  }
1150 }
1151 
1152 template <class BT>
1154  // Compute mass in loop.
1155  LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
1156 
1157  if (Loop.isIrreducible()) {
1158  LLVM_DEBUG(dbgs() << "isIrreducible = true\n");
1159  Distribution Dist;
1160  unsigned NumHeadersWithWeight = 0;
1161  Optional<uint64_t> MinHeaderWeight;
1162  DenseSet<uint32_t> HeadersWithoutWeight;
1163  HeadersWithoutWeight.reserve(Loop.NumHeaders);
1164  for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
1165  auto &HeaderNode = Loop.Nodes[H];
1166  const BlockT *Block = getBlock(HeaderNode);
1167  IsIrrLoopHeader.set(Loop.Nodes[H].Index);
1168  Optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight();
1169  if (!HeaderWeight) {
1170  LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on "
1171  << getBlockName(HeaderNode) << "\n");
1172  HeadersWithoutWeight.insert(H);
1173  continue;
1174  }
1175  LLVM_DEBUG(dbgs() << getBlockName(HeaderNode)
1176  << " has irr loop header weight "
1177  << HeaderWeight.getValue() << "\n");
1178  NumHeadersWithWeight++;
1179  uint64_t HeaderWeightValue = HeaderWeight.getValue();
1180  if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight)
1181  MinHeaderWeight = HeaderWeightValue;
1182  if (HeaderWeightValue) {
1183  Dist.addLocal(HeaderNode, HeaderWeightValue);
1184  }
1185  }
1186  // As a heuristic, if some headers don't have a weight, give them the
1187  // minimium weight seen (not to disrupt the existing trends too much by
1188  // using a weight that's in the general range of the other headers' weights,
1189  // and the minimum seems to perform better than the average.)
1190  // FIXME: better update in the passes that drop the header weight.
1191  // If no headers have a weight, give them even weight (use weight 1).
1192  if (!MinHeaderWeight)
1193  MinHeaderWeight = 1;
1194  for (uint32_t H : HeadersWithoutWeight) {
1195  auto &HeaderNode = Loop.Nodes[H];
1196  assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() &&
1197  "Shouldn't have a weight metadata");
1198  uint64_t MinWeight = MinHeaderWeight.getValue();
1199  LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to "
1200  << getBlockName(HeaderNode) << "\n");
1201  if (MinWeight)
1202  Dist.addLocal(HeaderNode, MinWeight);
1203  }
1204  distributeIrrLoopHeaderMass(Dist);
1205  for (const BlockNode &M : Loop.Nodes)
1206  if (!propagateMassToSuccessors(&Loop, M))
1207  llvm_unreachable("unhandled irreducible control flow");
1208  if (NumHeadersWithWeight == 0)
1209  // No headers have a metadata. Adjust header mass.
1210  adjustLoopHeaderMass(Loop);
1211  } else {
1212  Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
1213  if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
1214  llvm_unreachable("irreducible control flow to loop header!?");
1215  for (const BlockNode &M : Loop.members())
1216  if (!propagateMassToSuccessors(&Loop, M))
1217  // Irreducible backedge.
1218  return false;
1219  }
1220 
1221  computeLoopScale(Loop);
1222  packageLoop(Loop);
1223  return true;
1224 }
1225 
1226 template <class BT>
1228  // Compute mass in function.
1229  LLVM_DEBUG(dbgs() << "compute-mass-in-function\n");
1230  assert(!Working.empty() && "no blocks in function");
1231  assert(!Working[0].isLoopHeader() && "entry block is a loop header");
1232 
1233  Working[0].getMass() = BlockMass::getFull();
1234  for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
1235  // Check for nodes that have been packaged.
1236  BlockNode Node = getNode(I);
1237  if (Working[Node.Index].isPackaged())
1238  continue;
1239 
1240  if (!propagateMassToSuccessors(nullptr, Node))
1241  return false;
1242  }
1243  return true;
1244 }
1245 
1246 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
1247  if (tryToComputeMassInFunction())
1248  return;
1249  computeIrreducibleMass(nullptr, Loops.begin());
1250  if (tryToComputeMassInFunction())
1251  return;
1252  llvm_unreachable("unhandled irreducible control flow");
1253 }
1254 
1255 /// \note This should be a lambda, but that crashes GCC 4.7.
1256 namespace bfi_detail {
1257 
1258 template <class BT> struct BlockEdgesAdder {
1259  using BlockT = BT;
1262 
1264 
1266  : BFI(BFI) {}
1267 
1269  const LoopData *OuterLoop) {
1270  const BlockT *BB = BFI.RPOT[Irr.Node.Index];
1271  for (const auto Succ : children<const BlockT *>(BB))
1272  G.addEdge(Irr, BFI.getNode(Succ), OuterLoop);
1273  }
1274 };
1275 
1276 } // end namespace bfi_detail
1277 
1278 template <class BT>
1280  LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
1281  LLVM_DEBUG(dbgs() << "analyze-irreducible-in-";
1282  if (OuterLoop) dbgs()
1283  << "loop: " << getLoopName(*OuterLoop) << "\n";
1284  else dbgs() << "function\n");
1285 
1286  using namespace bfi_detail;
1287 
1288  // Ideally, addBlockEdges() would be declared here as a lambda, but that
1289  // crashes GCC 4.7.
1290  BlockEdgesAdder<BT> addBlockEdges(*this);
1291  IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
1292 
1293  for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
1294  computeMassInLoop(L);
1295 
1296  if (!OuterLoop)
1297  return;
1298  updateLoopWithIrreducible(*OuterLoop);
1299 }
1300 
1301 // A helper function that converts a branch probability into weight.
1303  return Prob.getNumerator();
1304 }
1305 
1306 template <class BT>
1307 bool
1309  const BlockNode &Node) {
1310  LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
1311  // Calculate probability for successors.
1312  Distribution Dist;
1313  if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
1314  assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
1315  if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
1316  // Irreducible backedge.
1317  return false;
1318  } else {
1319  const BlockT *BB = getBlock(Node);
1322  SI != SE; ++SI)
1323  if (!addToDist(
1324  Dist, OuterLoop, Node, getNode(*SI),
1325  getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI))))
1326  // Irreducible backedge.
1327  return false;
1328  }
1329 
1330  // Distribute mass to successors, saving exit and backedge data in the
1331  // loop header.
1332  distributeMass(Node, OuterLoop, Dist);
1333  return true;
1334 }
1335 
1336 template <class BT>
1338  if (!F)
1339  return OS;
1340  OS << "block-frequency-info: " << F->getName() << "\n";
1341  for (const BlockT &BB : *F) {
1342  OS << " - " << bfi_detail::getBlockName(&BB) << ": float = ";
1343  getFloatingBlockFreq(&BB).print(OS, 5)
1344  << ", int = " << getBlockFreq(&BB).getFrequency();
1347  F->getFunction(), getNode(&BB)))
1348  OS << ", count = " << ProfileCount.getValue();
1349  if (Optional<uint64_t> IrrLoopHeaderWeight =
1350  BB.getIrrLoopHeaderWeight())
1351  OS << ", irr_loop_header_weight = " << IrrLoopHeaderWeight.getValue();
1352  OS << "\n";
1353  }
1354 
1355  // Add an extra newline for readability.
1356  OS << "\n";
1357  return OS;
1358 }
1359 
1360 // Graph trait base class for block frequency information graph
1361 // viewer.
1362 
1364 
1365 template <class BlockFrequencyInfoT, class BranchProbabilityInfoT>
1368  using NodeRef = typename GTraits::NodeRef;
1369  using EdgeIter = typename GTraits::ChildIteratorType;
1370  using NodeIter = typename GTraits::nodes_iterator;
1371 
1372  uint64_t MaxFrequency = 0;
1373 
1374  explicit BFIDOTGraphTraitsBase(bool isSimple = false)
1376 
1377  static std::string getGraphName(const BlockFrequencyInfoT *G) {
1378  return G->getFunction()->getName();
1379  }
1380 
1381  std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph,
1382  unsigned HotPercentThreshold = 0) {
1383  std::string Result;
1384  if (!HotPercentThreshold)
1385  return Result;
1386 
1387  // Compute MaxFrequency on the fly:
1388  if (!MaxFrequency) {
1389  for (NodeIter I = GTraits::nodes_begin(Graph),
1390  E = GTraits::nodes_end(Graph);
1391  I != E; ++I) {
1392  NodeRef N = *I;
1393  MaxFrequency =
1394  std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency());
1395  }
1396  }
1397  BlockFrequency Freq = Graph->getBlockFreq(Node);
1398  BlockFrequency HotFreq =
1399  (BlockFrequency(MaxFrequency) *
1400  BranchProbability::getBranchProbability(HotPercentThreshold, 100));
1401 
1402  if (Freq < HotFreq)
1403  return Result;
1404 
1405  raw_string_ostream OS(Result);
1406  OS << "color=\"red\"";
1407  OS.flush();
1408  return Result;
1409  }
1410 
1411  std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph,
1412  GVDAGType GType, int layout_order = -1) {
1413  std::string Result;
1414  raw_string_ostream OS(Result);
1415 
1416  if (layout_order != -1)
1417  OS << Node->getName() << "[" << layout_order << "] : ";
1418  else
1419  OS << Node->getName() << " : ";
1420  switch (GType) {
1421  case GVDT_Fraction:
1422  Graph->printBlockFreq(OS, Node);
1423  break;
1424  case GVDT_Integer:
1425  OS << Graph->getBlockFreq(Node).getFrequency();
1426  break;
1427  case GVDT_Count: {
1428  auto Count = Graph->getBlockProfileCount(Node);
1429  if (Count)
1430  OS << Count.getValue();
1431  else
1432  OS << "Unknown";
1433  break;
1434  }
1435  case GVDT_None:
1436  llvm_unreachable("If we are not supposed to render a graph we should "
1437  "never reach this point.");
1438  }
1439  return Result;
1440  }
1441 
1442  std::string getEdgeAttributes(NodeRef Node, EdgeIter EI,
1443  const BlockFrequencyInfoT *BFI,
1444  const BranchProbabilityInfoT *BPI,
1445  unsigned HotPercentThreshold = 0) {
1446  std::string Str;
1447  if (!BPI)
1448  return Str;
1449 
1450  BranchProbability BP = BPI->getEdgeProbability(Node, EI);
1451  uint32_t N = BP.getNumerator();
1452  uint32_t D = BP.getDenominator();
1453  double Percent = 100.0 * N / D;
1454  raw_string_ostream OS(Str);
1455  OS << format("label=\"%.1f%%\"", Percent);
1456 
1457  if (HotPercentThreshold) {
1458  BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP;
1459  BlockFrequency HotFreq = BlockFrequency(MaxFrequency) *
1460  BranchProbability(HotPercentThreshold, 100);
1461 
1462  if (EFreq >= HotFreq) {
1463  OS << ",color=\"red\"";
1464  }
1465  }
1466 
1467  OS.flush();
1468  return Str;
1469  }
1470 };
1471 
1472 } // end namespace llvm
1473 
1474 #undef DEBUG_TYPE
1475 
1476 #endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
BlockMass operator+(BlockMass L, BlockMass R)
void setBlockFreq(const BlockT *BB, uint64_t Freq)
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
bool IsPackaged
Whether this has been packaged.
LLVM_NODISCARD std::string str() const
str - Get the contents as an std::string.
Definition: StringRef.h:228
bool operator<=(BlockMass X) const
typename SuperClass::const_iterator const_iterator
Definition: SmallVector.h:328
This class represents lattice values for constants.
Definition: AllocatorList.h:24
Scaled64 getFloatingBlockFreq(const BlockT *BB) const
bool isIrrLoopHeader(const BlockT *BB)
Various leaf nodes.
Definition: ISDOpcodes.h:60
LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther, It2 LastOther)
void push_back(const T &Elt)
Definition: SmallVector.h:218
NodeList::const_iterator members_begin() const
This provides a very simple, boring adaptor for a begin and end iterator into a range type...
raw_ostream & printBlockFreq(raw_ostream &OS, const BlockNode &Node) const
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition: Format.h:124
static std::string getGraphName(const BlockFrequencyInfoT *G)
BlockFrequency getBlockFreq(const BlockT *BB) const
Optional< uint64_t > getBlockProfileCount(const Function &F, const BlockT *BB) const
raw_ostream & print(raw_ostream &OS) const
const BranchProbabilityInfoT & getBPI() const
void addLocal(const BlockNode &Node, uint64_t Amount)
F(f)
SmallDenseMap< uint32_t, IrrNode *, 4 > Lookup
IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop, BlockEdgesAdder addBlockEdges)
Construct an explicit graph containing irreducible control flow.
const BlockFrequencyInfoImpl< BT > & BFI
void setBlockFreq(const BlockNode &Node, uint64_t Freq)
BFIDOTGraphTraitsBase(bool isSimple=false)
SparseBitVector IsIrrLoopHeader
Whether each block is an irreducible loop header.
void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr, const LoopData *OuterLoop)
Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
NodeList::const_iterator members_end() const
Hexagon Hardware Loops
uint32_t getWeightFromBranchProb(const BranchProbability Prob)
BlockMass & getMass()
Get the appropriate mass for a node.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
Scaled64 getFloatingBlockFreq(const BlockNode &Node) const
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
bool isAPackage() const
Has Loop been packaged up?
virtual raw_ostream & print(raw_ostream &OS) const
std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph, GVDAGType GType, int layout_order=-1)
void addEdge(IrrNode &Irr, const BlockNode &Succ, const BFIBase::LoopData *OuterLoop)
BlockMass & operator*=(BranchProbability P)
bool operator>=(BlockMass X) const
Interval::succ_iterator succ_begin(Interval *I)
succ_begin/succ_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Definition: Interval.h:103
static bool isSimple(Instruction *I)
auto reverse(ContainerTy &&C, typename std::enable_if< has_rbegin< ContainerTy >::value >::type *=nullptr) -> decltype(make_range(C.rbegin(), C.rend()))
Definition: STLExtras.h:267
bool operator==(BlockMass X) const
Graph of irreducible control flow.
const T & getValue() const LLVM_LVALUE_FUNCTION
Definition: Optional.h:161
std::deque< const IrrNode * >::const_iterator iterator
auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range))
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1282
void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI, const LoopInfoT &LI)
static void addEdge(SmallVectorImpl< LazyCallGraph::Edge > &Edges, DenseMap< LazyCallGraph::Node *, int > &EdgeIndexMap, LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK)
raw_ostream & print(raw_ostream &OS) const override
Print the frequencies for the current function.
void addBackedge(const BlockNode &Node, uint64_t Amount)
void initialize(const BFIBase::LoopData *OuterLoop, BlockEdgesAdder addBlockEdges)
bool isHeader(const BlockNode &Node) const
Optional< uint64_t > getProfileCountFromFreq(const Function &F, uint64_t Freq) const
bool isIrrLoopHeader(const BlockNode &Node)
#define P(N)
std::vector< FrequencyData > Freqs
Data about each block. This is used downstream.
typename GraphType::UnknownGraphTypeError NodeRef
Definition: GraphTraits.h:79
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
BlockMass & operator-=(BlockMass X)
Subtract another mass.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
BlockMass & operator+=(BlockMass X)
Add another mass.
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator begin()
Definition: SmallVector.h:129
#define H(x, y, z)
Definition: MD5.cpp:57
Distribution of unscaled probability weight.
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:188
po_iterator< T > po_end(const T &G)
Optional< uint64_t > getProfileCountFromFreq(const Function &F, uint64_t Freq) const
BlockNode getResolvedNode() const
Resolve a node to its representative.
BlockMass Mass
Mass distribution from the entry block.
typename GTraits::NodeRef NodeRef
BlockEdgesAdder(const BlockFrequencyInfoImpl< BT > &BFI)
BlockMass operator*(BlockMass L, BranchProbability R)
Class to represent profile counts.
Definition: Function.h:261
size_t size() const
Definition: SmallVector.h:53
std::string getEdgeAttributes(NodeRef Node, EdgeIter EI, const BlockFrequencyInfoT *BFI, const BranchProbabilityInfoT *BPI, unsigned HotPercentThreshold=0)
raw_ostream & operator<<(raw_ostream &OS, BlockMass X)
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
void addExit(const BlockNode &Node, uint64_t Amount)
std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph, unsigned HotPercentThreshold=0)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
isPodLike - This is a type trait that is used to determine whether a given type can be copied around ...
Definition: ArrayRef.h:530
static uint32_t getDenominator()
bool isADoublePackage() const
Has Loop been packaged up twice?
ExitMap Exits
Successor edges (and weights).
static BranchProbability getBranchProbability(uint64_t Numerator, uint64_t Denominator)
const DataFlowGraph & G
Definition: RDFGraph.cpp:211
BlockMass operator-(BlockMass L, BlockMass R)
uint64_t scale(uint64_t Num) const
Scale a large integer.
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
ScaledNumber< uint64_t > toScaled() const
Convert to scaled number.
std::list< LoopData > Loops
Indexed information about loops.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
A range adaptor for a pair of iterators.
std::string getBlockName(const BlockT *BB)
Get the name of a MachineBasicBlock.
static void initialize(TargetLibraryInfoImpl &TLI, const Triple &T, ArrayRef< StringRef > StandardNames)
Initialize the set of available library functions based on the specified target triple.
LoopData(LoopData *Parent, const BlockNode &Header)
static void clear(coro::Shape &Shape)
Definition: Coroutines.cpp:212
iterator insert(iterator I, T &&Elt)
Definition: SmallVector.h:478
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator end()
Definition: SmallVector.h:133
Analysis providing branch probability information.
bool operator>(BlockMass X) const
void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop, BlockEdgesAdder addBlockEdges)
iterator begin()
Definition: DenseMap.h:100
BitTracker BT
Definition: BitTracker.cpp:74
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:465
raw_ostream & printBlockFreq(raw_ostream &OS, const BlockT *BB) const
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
void reserve(size_t Size)
Grow the DenseSet so that it can contain at least NumEntries items before resizing again...
Definition: DenseSet.h:85
typename GTraits::ChildIteratorType EdgeIter
typename GTraits::nodes_iterator NodeIter
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:171
std::string str() const
Return the twine contents as a std::string.
Definition: Twine.cpp:18
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:211
iterator_range< NodeList::const_iterator > members() const
bool operator!=(BlockMass X) const
NodeList Nodes
Header and the members of the loop.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:483
bool operator<(BlockMass X) const
std::vector< WorkingData > Working
Loop data: see initializeLoops().
HeaderMassList BackedgeMass
Mass returned to each loop header.
This class implements an extremely fast bulk output stream that can only output to a stream...
Definition: raw_ostream.h:46
DefaultDOTGraphTraits - This class provides the default implementations of all of the DOTGraphTraits ...
Optional< uint64_t > getBlockProfileCount(const Function &F, const BlockNode &Node) const
const FunctionT * getFunction() const
Shared implementation for block frequency analysis.
BlockFrequency getBlockFreq(const BlockNode &Node) const
Base class for BlockFrequencyInfoImpl.
#define LLVM_DEBUG(X)
Definition: Debug.h:123
OutputIt copy(R &&Range, OutputIt Out)
Definition: STLExtras.h:1238
HeaderMassList::difference_type getHeaderIndex(const BlockNode &B)
LoopData & getLoopPackage(const BlockNode &Head)
uint32_t getNumerator() const
bool isPackaged() const
Has ContainingLoop been packaged up?
po_iterator< T > po_begin(const T &G)
WeightList Weights
Individual successor weights.
void resize(size_type N)
Definition: SmallVector.h:351