LLVM  8.0.1
LegalizeTypes.h
Go to the documentation of this file.
1 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the DAGTypeLegalizer class. This is a private interface
11 // shared between the code that implements the SelectionDAG::LegalizeTypes
12 // method.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
17 #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
18 
19 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Support/Debug.h"
24 
25 namespace llvm {
26 
27 //===----------------------------------------------------------------------===//
28 /// This takes an arbitrary SelectionDAG as input and hacks on it until only
29 /// value types the target machine can handle are left. This involves promoting
30 /// small sizes to large sizes or splitting up large values into small values.
31 ///
33  const TargetLowering &TLI;
34  SelectionDAG &DAG;
35 public:
36  /// This pass uses the NodeId on the SDNodes to hold information about the
37  /// state of the node. The enum has all the values.
38  enum NodeIdFlags {
39  /// All operands have been processed, so this node is ready to be handled.
40  ReadyToProcess = 0,
41 
42  /// This is a new node, not before seen, that was created in the process of
43  /// legalizing some other node.
44  NewNode = -1,
45 
46  /// This node's ID needs to be set to the number of its unprocessed
47  /// operands.
48  Unanalyzed = -2,
49 
50  /// This is a node that has already been processed.
51  Processed = -3
52 
53  // 1+ - This is a node which has this many unprocessed operands.
54  };
55 private:
56 
57  /// This is a bitvector that contains two bits for each simple value type,
58  /// where the two bits correspond to the LegalizeAction enum from
59  /// TargetLowering. This can be queried with "getTypeAction(VT)".
60  TargetLowering::ValueTypeActionImpl ValueTypeActions;
61 
62  /// Return how we should legalize values of this type.
63  TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
64  return TLI.getTypeAction(*DAG.getContext(), VT);
65  }
66 
67  /// Return true if this type is legal on this target.
68  bool isTypeLegal(EVT VT) const {
69  return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
70  }
71 
72  /// Return true if this is a simple legal type.
73  bool isSimpleLegalType(EVT VT) const {
74  return VT.isSimple() && TLI.isTypeLegal(VT);
75  }
76 
77  /// Return true if this type can be passed in registers.
78  /// For example, x86_64's f128, should to be legally in registers
79  /// and only some operations converted to library calls or integer
80  /// bitwise operations.
81  bool isLegalInHWReg(EVT VT) const {
82  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
83  return VT == NVT && isSimpleLegalType(VT);
84  }
85 
86  EVT getSetCCResultType(EVT VT) const {
87  return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
88  }
89 
90  /// Pretend all of this node's results are legal.
91  bool IgnoreNodeResults(SDNode *N) const {
92  return N->getOpcode() == ISD::TargetConstant ||
93  N->getOpcode() == ISD::Register;
94  }
95 
96  // Bijection from SDValue to unique id. As each created node gets a
97  // new id we do not need to worry about reuse expunging. Should we
98  // run out of ids, we can do a one time expensive compactifcation.
99  typedef unsigned TableId;
100 
101  TableId NextValueId = 1;
102 
105 
106  /// For integer nodes that are below legal width, this map indicates what
107  /// promoted value to use.
108  SmallDenseMap<TableId, TableId, 8> PromotedIntegers;
109 
110  /// For integer nodes that need to be expanded this map indicates which
111  /// operands are the expanded version of the input.
113 
114  /// For floating-point nodes converted to integers of the same size, this map
115  /// indicates the converted value to use.
116  SmallDenseMap<TableId, TableId, 8> SoftenedFloats;
117 
118  /// For floating-point nodes that have a smaller precision than the smallest
119  /// supported precision, this map indicates what promoted value to use.
120  SmallDenseMap<TableId, TableId, 8> PromotedFloats;
121 
122  /// For float nodes that need to be expanded this map indicates which operands
123  /// are the expanded version of the input.
125 
126  /// For nodes that are <1 x ty>, this map indicates the scalar value of type
127  /// 'ty' to use.
128  SmallDenseMap<TableId, TableId, 8> ScalarizedVectors;
129 
130  /// For nodes that need to be split this map indicates which operands are the
131  /// expanded version of the input.
133 
134  /// For vector nodes that need to be widened, indicates the widened value to
135  /// use.
136  SmallDenseMap<TableId, TableId, 8> WidenedVectors;
137 
138  /// For values that have been replaced with another, indicates the replacement
139  /// value to use.
140  SmallDenseMap<TableId, TableId, 8> ReplacedValues;
141 
142  /// This defines a worklist of nodes to process. In order to be pushed onto
143  /// this worklist, all operands of a node must have already been processed.
144  SmallVector<SDNode*, 128> Worklist;
145 
146  TableId getTableId(SDValue V) {
147  assert(V.getNode() && "Getting TableId on SDValue()");
148 
149  auto I = ValueToIdMap.find(V);
150  if (I != ValueToIdMap.end()) {
151  // replace if there's been a shift.
152  RemapId(I->second);
153  assert(I->second && "All Ids should be nonzero");
154  return I->second;
155  }
156  // Add if it's not there.
157  ValueToIdMap.insert(std::make_pair(V, NextValueId));
158  IdToValueMap.insert(std::make_pair(NextValueId, V));
159  ++NextValueId;
160  assert(NextValueId != 0 &&
161  "Ran out of Ids. Increase id type size or add compactification");
162  return NextValueId - 1;
163  }
164 
165  const SDValue &getSDValue(TableId &Id) {
166  RemapId(Id);
167  assert(Id && "TableId should be non-zero");
168  return IdToValueMap[Id];
169  }
170 
171 public:
173  : TLI(dag.getTargetLoweringInfo()), DAG(dag),
174  ValueTypeActions(TLI.getValueTypeActions()) {
176  "Too many value types for ValueTypeActions to hold!");
177  }
178 
179  /// This is the main entry point for the type legalizer. This does a
180  /// top-down traversal of the dag, legalizing types as it goes. Returns
181  /// "true" if it made any changes.
182  bool run();
183 
184  void NoteDeletion(SDNode *Old, SDNode *New) {
185  for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
186  TableId NewId = getTableId(SDValue(New, i));
187  TableId OldId = getTableId(SDValue(Old, i));
188 
189  if (OldId != NewId)
190  ReplacedValues[OldId] = NewId;
191 
192  // Delete Node from tables.
193  ValueToIdMap.erase(SDValue(Old, i));
194  IdToValueMap.erase(OldId);
195  PromotedIntegers.erase(OldId);
196  ExpandedIntegers.erase(OldId);
197  SoftenedFloats.erase(OldId);
198  PromotedFloats.erase(OldId);
199  ExpandedFloats.erase(OldId);
200  ScalarizedVectors.erase(OldId);
201  SplitVectors.erase(OldId);
202  WidenedVectors.erase(OldId);
203  }
204  }
205 
206  SelectionDAG &getDAG() const { return DAG; }
207 
208 private:
209  SDNode *AnalyzeNewNode(SDNode *N);
210  void AnalyzeNewValue(SDValue &Val);
211  void PerformExpensiveChecks();
212  void RemapId(TableId &Id);
213  void RemapValue(SDValue &V);
214 
215  // Common routines.
216  SDValue BitConvertToInteger(SDValue Op);
217  SDValue BitConvertVectorToIntegerVector(SDValue Op);
218  SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
219  bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
220  bool CustomWidenLowerNode(SDNode *N, EVT VT);
221 
222  /// Replace each result of the given MERGE_VALUES node with the corresponding
223  /// input operand, except for the result 'ResNo', for which the corresponding
224  /// input operand is returned.
225  SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
226 
227  SDValue JoinIntegers(SDValue Lo, SDValue Hi);
228  SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
229 
230  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
231  SDNode *Node, bool isSigned);
232  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
233 
234  SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
235 
236  void ReplaceValueWith(SDValue From, SDValue To);
237  void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
238  void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
239  SDValue &Lo, SDValue &Hi);
240 
241  void AddToWorklist(SDNode *N) {
242  N->setNodeId(ReadyToProcess);
243  Worklist.push_back(N);
244  }
245 
246  //===--------------------------------------------------------------------===//
247  // Integer Promotion Support: LegalizeIntegerTypes.cpp
248  //===--------------------------------------------------------------------===//
249 
250  /// Given a processed operand Op which was promoted to a larger integer type,
251  /// this returns the promoted value. The low bits of the promoted value
252  /// corresponding to the original type are exactly equal to Op.
253  /// The extra bits contain rubbish, so the promoted value may need to be zero-
254  /// or sign-extended from the original type before it is usable (the helpers
255  /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
256  /// For example, if Op is an i16 and was promoted to an i32, then this method
257  /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
258  /// 16 bits of which contain rubbish.
259  SDValue GetPromotedInteger(SDValue Op) {
260  TableId &PromotedId = PromotedIntegers[getTableId(Op)];
261  SDValue PromotedOp = getSDValue(PromotedId);
262  assert(PromotedOp.getNode() && "Operand wasn't promoted?");
263  return PromotedOp;
264  }
265  void SetPromotedInteger(SDValue Op, SDValue Result);
266 
267  /// Get a promoted operand and sign extend it to the final size.
268  SDValue SExtPromotedInteger(SDValue Op) {
269  EVT OldVT = Op.getValueType();
270  SDLoc dl(Op);
271  Op = GetPromotedInteger(Op);
272  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
273  DAG.getValueType(OldVT));
274  }
275 
276  /// Get a promoted operand and zero extend it to the final size.
277  SDValue ZExtPromotedInteger(SDValue Op) {
278  EVT OldVT = Op.getValueType();
279  SDLoc dl(Op);
280  Op = GetPromotedInteger(Op);
281  return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType());
282  }
283 
284  // Get a promoted operand and sign or zero extend it to the final size
285  // (depending on TargetLoweringInfo::isSExtCheaperThanZExt). For a given
286  // subtarget and type, the choice of sign or zero-extension will be
287  // consistent.
288  SDValue SExtOrZExtPromotedInteger(SDValue Op) {
289  EVT OldVT = Op.getValueType();
290  SDLoc DL(Op);
291  Op = GetPromotedInteger(Op);
292  if (TLI.isSExtCheaperThanZExt(OldVT, Op.getValueType()))
293  return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), Op,
294  DAG.getValueType(OldVT));
295  return DAG.getZeroExtendInReg(Op, DL, OldVT.getScalarType());
296  }
297 
298  // Integer Result Promotion.
299  void PromoteIntegerResult(SDNode *N, unsigned ResNo);
300  SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
301  SDValue PromoteIntRes_AssertSext(SDNode *N);
302  SDValue PromoteIntRes_AssertZext(SDNode *N);
303  SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
304  SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
305  SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
306  SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
307  SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
308  SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
309  SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
310  SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N);
311  SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
312  SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
313  SDValue PromoteIntRes_BITCAST(SDNode *N);
314  SDValue PromoteIntRes_BSWAP(SDNode *N);
315  SDValue PromoteIntRes_BITREVERSE(SDNode *N);
316  SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
317  SDValue PromoteIntRes_Constant(SDNode *N);
318  SDValue PromoteIntRes_CTLZ(SDNode *N);
319  SDValue PromoteIntRes_CTPOP(SDNode *N);
320  SDValue PromoteIntRes_CTTZ(SDNode *N);
321  SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
322  SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
323  SDValue PromoteIntRes_FP_TO_FP16(SDNode *N);
324  SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
325  SDValue PromoteIntRes_LOAD(LoadSDNode *N);
326  SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
327  SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N);
328  SDValue PromoteIntRes_Overflow(SDNode *N);
329  SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
330  SDValue PromoteIntRes_SELECT(SDNode *N);
331  SDValue PromoteIntRes_VSELECT(SDNode *N);
332  SDValue PromoteIntRes_SELECT_CC(SDNode *N);
333  SDValue PromoteIntRes_SETCC(SDNode *N);
334  SDValue PromoteIntRes_SHL(SDNode *N);
335  SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
336  SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N);
337  SDValue PromoteIntRes_SExtIntBinOp(SDNode *N);
338  SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
339  SDValue PromoteIntRes_SRA(SDNode *N);
340  SDValue PromoteIntRes_SRL(SDNode *N);
341  SDValue PromoteIntRes_TRUNCATE(SDNode *N);
342  SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
343  SDValue PromoteIntRes_ADDSUBCARRY(SDNode *N, unsigned ResNo);
344  SDValue PromoteIntRes_UNDEF(SDNode *N);
345  SDValue PromoteIntRes_VAARG(SDNode *N);
346  SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
347  SDValue PromoteIntRes_ADDSUBSAT(SDNode *N);
348  SDValue PromoteIntRes_SMULFIX(SDNode *N);
349  SDValue PromoteIntRes_FLT_ROUNDS(SDNode *N);
350 
351  // Integer Operand Promotion.
352  bool PromoteIntegerOperand(SDNode *N, unsigned OpNo);
353  SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
354  SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
355  SDValue PromoteIntOp_BITCAST(SDNode *N);
356  SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
357  SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
358  SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
359  SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
360  SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
361  SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
362  SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
363  SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
364  SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
365  SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
366  SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
367  SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
368  SDValue PromoteIntOp_Shift(SDNode *N);
369  SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
370  SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
371  SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
372  SDValue PromoteIntOp_TRUNCATE(SDNode *N);
373  SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
374  SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
375  SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
376  SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
377  SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
378  SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
379  SDValue PromoteIntOp_ADDSUBCARRY(SDNode *N, unsigned OpNo);
380  SDValue PromoteIntOp_FRAMERETURNADDR(SDNode *N);
381  SDValue PromoteIntOp_PREFETCH(SDNode *N, unsigned OpNo);
382  SDValue PromoteIntOp_SMULFIX(SDNode *N);
383 
384  void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
385 
386  //===--------------------------------------------------------------------===//
387  // Integer Expansion Support: LegalizeIntegerTypes.cpp
388  //===--------------------------------------------------------------------===//
389 
390  /// Given a processed operand Op which was expanded into two integers of half
391  /// the size, this returns the two halves. The low bits of Op are exactly
392  /// equal to the bits of Lo; the high bits exactly equal Hi.
393  /// For example, if Op is an i64 which was expanded into two i32's, then this
394  /// method returns the two i32's, with Lo being equal to the lower 32 bits of
395  /// Op, and Hi being equal to the upper 32 bits.
396  void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
397  void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
398 
399  // Integer Result Expansion.
400  void ExpandIntegerResult(SDNode *N, unsigned ResNo);
401  void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
402  void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi);
403  void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi);
404  void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi);
405  void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi);
406  void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi);
407  void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi);
408  void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
409  void ExpandIntRes_READCYCLECOUNTER (SDNode *N, SDValue &Lo, SDValue &Hi);
410  void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
411  void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
412  void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi);
413  void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
414  void ExpandIntRes_FLT_ROUNDS (SDNode *N, SDValue &Lo, SDValue &Hi);
415  void ExpandIntRes_FP_TO_SINT (SDNode *N, SDValue &Lo, SDValue &Hi);
416  void ExpandIntRes_FP_TO_UINT (SDNode *N, SDValue &Lo, SDValue &Hi);
417 
418  void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi);
419  void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
420  void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi);
421  void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi);
422  void ExpandIntRes_ADDSUBCARRY (SDNode *N, SDValue &Lo, SDValue &Hi);
423  void ExpandIntRes_BITREVERSE (SDNode *N, SDValue &Lo, SDValue &Hi);
424  void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi);
425  void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi);
426  void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
427  void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi);
428  void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
429  void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi);
430  void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi);
431 
432  void ExpandIntRes_MINMAX (SDNode *N, SDValue &Lo, SDValue &Hi);
433 
434  void ExpandIntRes_SADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi);
435  void ExpandIntRes_UADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi);
436  void ExpandIntRes_XMULO (SDNode *N, SDValue &Lo, SDValue &Hi);
437  void ExpandIntRes_ADDSUBSAT (SDNode *N, SDValue &Lo, SDValue &Hi);
438  void ExpandIntRes_SMULFIX (SDNode *N, SDValue &Lo, SDValue &Hi);
439 
440  void ExpandIntRes_ATOMIC_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi);
441 
442  void ExpandShiftByConstant(SDNode *N, const APInt &Amt,
443  SDValue &Lo, SDValue &Hi);
444  bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
445  bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
446 
447  // Integer Operand Expansion.
448  bool ExpandIntegerOperand(SDNode *N, unsigned OpNo);
449  SDValue ExpandIntOp_BR_CC(SDNode *N);
450  SDValue ExpandIntOp_SELECT_CC(SDNode *N);
451  SDValue ExpandIntOp_SETCC(SDNode *N);
452  SDValue ExpandIntOp_SETCCCARRY(SDNode *N);
453  SDValue ExpandIntOp_Shift(SDNode *N);
454  SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
455  SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
456  SDValue ExpandIntOp_TRUNCATE(SDNode *N);
457  SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
458  SDValue ExpandIntOp_RETURNADDR(SDNode *N);
459  SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
460 
461  void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
462  ISD::CondCode &CCCode, const SDLoc &dl);
463 
464  //===--------------------------------------------------------------------===//
465  // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
466  //===--------------------------------------------------------------------===//
467 
468  /// Given an operand Op of Float type, returns the integer if the Op is not
469  /// supported in target HW and converted to the integer.
470  /// The integer contains exactly the same bits as Op - only the type changed.
471  /// For example, if Op is an f32 which was softened to an i32, then this
472  /// method returns an i32, the bits of which coincide with those of Op.
473  /// If the Op can be efficiently supported in target HW or the operand must
474  /// stay in a register, the Op is not converted to an integer.
475  /// In that case, the given op is returned.
476  SDValue GetSoftenedFloat(SDValue Op) {
477  TableId Id = getTableId(Op);
478  auto Iter = SoftenedFloats.find(Id);
479  if (Iter == SoftenedFloats.end()) {
480  assert(isSimpleLegalType(Op.getValueType()) &&
481  "Operand wasn't converted to integer?");
482  return Op;
483  }
484  SDValue SoftenedOp = getSDValue(Iter->second);
485  assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?");
486  return SoftenedOp;
487  }
488  void SetSoftenedFloat(SDValue Op, SDValue Result);
489 
490  // Convert Float Results to Integer for Non-HW-supported Operations.
491  bool SoftenFloatResult(SDNode *N, unsigned ResNo);
492  SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
493  SDValue SoftenFloatRes_BITCAST(SDNode *N, unsigned ResNo);
494  SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
495  SDValue SoftenFloatRes_ConstantFP(SDNode *N, unsigned ResNo);
496  SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo);
497  SDValue SoftenFloatRes_FABS(SDNode *N, unsigned ResNo);
498  SDValue SoftenFloatRes_FMINNUM(SDNode *N);
499  SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
500  SDValue SoftenFloatRes_FADD(SDNode *N);
501  SDValue SoftenFloatRes_FCEIL(SDNode *N);
502  SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N, unsigned ResNo);
503  SDValue SoftenFloatRes_FCOS(SDNode *N);
504  SDValue SoftenFloatRes_FDIV(SDNode *N);
505  SDValue SoftenFloatRes_FEXP(SDNode *N);
506  SDValue SoftenFloatRes_FEXP2(SDNode *N);
507  SDValue SoftenFloatRes_FFLOOR(SDNode *N);
508  SDValue SoftenFloatRes_FLOG(SDNode *N);
509  SDValue SoftenFloatRes_FLOG2(SDNode *N);
510  SDValue SoftenFloatRes_FLOG10(SDNode *N);
511  SDValue SoftenFloatRes_FMA(SDNode *N);
512  SDValue SoftenFloatRes_FMUL(SDNode *N);
513  SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
514  SDValue SoftenFloatRes_FNEG(SDNode *N, unsigned ResNo);
515  SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
516  SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
517  SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
518  SDValue SoftenFloatRes_FPOW(SDNode *N);
519  SDValue SoftenFloatRes_FPOWI(SDNode *N);
520  SDValue SoftenFloatRes_FREM(SDNode *N);
521  SDValue SoftenFloatRes_FRINT(SDNode *N);
522  SDValue SoftenFloatRes_FROUND(SDNode *N);
523  SDValue SoftenFloatRes_FSIN(SDNode *N);
524  SDValue SoftenFloatRes_FSQRT(SDNode *N);
525  SDValue SoftenFloatRes_FSUB(SDNode *N);
526  SDValue SoftenFloatRes_FTRUNC(SDNode *N);
527  SDValue SoftenFloatRes_LOAD(SDNode *N, unsigned ResNo);
528  SDValue SoftenFloatRes_SELECT(SDNode *N, unsigned ResNo);
529  SDValue SoftenFloatRes_SELECT_CC(SDNode *N, unsigned ResNo);
530  SDValue SoftenFloatRes_UNDEF(SDNode *N);
531  SDValue SoftenFloatRes_VAARG(SDNode *N);
532  SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
533 
534  // Return true if we can skip softening the given operand or SDNode because
535  // either it was soften before by SoftenFloatResult and references to the
536  // operand were replaced by ReplaceValueWith or it's value type is legal in HW
537  // registers and the operand can be left unchanged.
538  bool CanSkipSoftenFloatOperand(SDNode *N, unsigned OpNo);
539 
540  // Convert Float Operand to Integer for Non-HW-supported Operations.
541  bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
542  SDValue SoftenFloatOp_BITCAST(SDNode *N);
543  SDValue SoftenFloatOp_COPY_TO_REG(SDNode *N);
544  SDValue SoftenFloatOp_BR_CC(SDNode *N);
545  SDValue SoftenFloatOp_FABS(SDNode *N);
546  SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N);
547  SDValue SoftenFloatOp_FNEG(SDNode *N);
548  SDValue SoftenFloatOp_FP_EXTEND(SDNode *N);
549  SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
550  SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N);
551  SDValue SoftenFloatOp_SELECT(SDNode *N);
552  SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
553  SDValue SoftenFloatOp_SETCC(SDNode *N);
554  SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
555 
556  //===--------------------------------------------------------------------===//
557  // Float Expansion Support: LegalizeFloatTypes.cpp
558  //===--------------------------------------------------------------------===//
559 
560  /// Given a processed operand Op which was expanded into two floating-point
561  /// values of half the size, this returns the two halves.
562  /// The low bits of Op are exactly equal to the bits of Lo; the high bits
563  /// exactly equal Hi. For example, if Op is a ppcf128 which was expanded
564  /// into two f64's, then this method returns the two f64's, with Lo being
565  /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
566  void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
567  void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
568 
569  // Float Result Expansion.
570  void ExpandFloatResult(SDNode *N, unsigned ResNo);
571  void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
572  void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi);
573  void ExpandFloatRes_FMINNUM (SDNode *N, SDValue &Lo, SDValue &Hi);
574  void ExpandFloatRes_FMAXNUM (SDNode *N, SDValue &Lo, SDValue &Hi);
575  void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi);
576  void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi);
577  void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
578  void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi);
579  void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
580  void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi);
581  void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi);
582  void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi);
583  void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi);
584  void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi);
585  void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi);
586  void ExpandFloatRes_FMA (SDNode *N, SDValue &Lo, SDValue &Hi);
587  void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi);
588  void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
589  void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi);
590  void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
591  void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi);
592  void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi);
593  void ExpandFloatRes_FREM (SDNode *N, SDValue &Lo, SDValue &Hi);
594  void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi);
595  void ExpandFloatRes_FROUND (SDNode *N, SDValue &Lo, SDValue &Hi);
596  void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi);
597  void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi);
598  void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
599  void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi);
600  void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi);
601  void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
602 
603  // Float Operand Expansion.
604  bool ExpandFloatOperand(SDNode *N, unsigned OpNo);
605  SDValue ExpandFloatOp_BR_CC(SDNode *N);
606  SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
607  SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
608  SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
609  SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
610  SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
611  SDValue ExpandFloatOp_SETCC(SDNode *N);
612  SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
613 
614  void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
615  ISD::CondCode &CCCode, const SDLoc &dl);
616 
617  //===--------------------------------------------------------------------===//
618  // Float promotion support: LegalizeFloatTypes.cpp
619  //===--------------------------------------------------------------------===//
620 
621  SDValue GetPromotedFloat(SDValue Op) {
622  TableId &PromotedId = PromotedFloats[getTableId(Op)];
623  SDValue PromotedOp = getSDValue(PromotedId);
624  assert(PromotedOp.getNode() && "Operand wasn't promoted?");
625  return PromotedOp;
626  }
627  void SetPromotedFloat(SDValue Op, SDValue Result);
628 
629  void PromoteFloatResult(SDNode *N, unsigned ResNo);
630  SDValue PromoteFloatRes_BITCAST(SDNode *N);
631  SDValue PromoteFloatRes_BinOp(SDNode *N);
632  SDValue PromoteFloatRes_ConstantFP(SDNode *N);
633  SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
634  SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
635  SDValue PromoteFloatRes_FMAD(SDNode *N);
636  SDValue PromoteFloatRes_FPOWI(SDNode *N);
637  SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
638  SDValue PromoteFloatRes_LOAD(SDNode *N);
639  SDValue PromoteFloatRes_SELECT(SDNode *N);
640  SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
641  SDValue PromoteFloatRes_UnaryOp(SDNode *N);
642  SDValue PromoteFloatRes_UNDEF(SDNode *N);
643  SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
644 
645  bool PromoteFloatOperand(SDNode *N, unsigned OpNo);
646  SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
647  SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
648  SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
649  SDValue PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo);
650  SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
651  SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
652  SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
653 
654  //===--------------------------------------------------------------------===//
655  // Scalarization Support: LegalizeVectorTypes.cpp
656  //===--------------------------------------------------------------------===//
657 
658  /// Given a processed one-element vector Op which was scalarized to its
659  /// element type, this returns the element. For example, if Op is a v1i32,
660  /// Op = < i32 val >, this method returns val, an i32.
661  SDValue GetScalarizedVector(SDValue Op) {
662  TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)];
663  SDValue ScalarizedOp = getSDValue(ScalarizedId);
664  assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
665  return ScalarizedOp;
666  }
667  void SetScalarizedVector(SDValue Op, SDValue Result);
668 
669  // Vector Result Scalarization: <1 x ty> -> ty.
670  void ScalarizeVectorResult(SDNode *N, unsigned ResNo);
671  SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
672  SDValue ScalarizeVecRes_BinOp(SDNode *N);
673  SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
674  SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
675  SDValue ScalarizeVecRes_StrictFPOp(SDNode *N);
676  SDValue ScalarizeVecRes_InregOp(SDNode *N);
677  SDValue ScalarizeVecRes_VecInregOp(SDNode *N);
678 
679  SDValue ScalarizeVecRes_BITCAST(SDNode *N);
680  SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
681  SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
682  SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
683  SDValue ScalarizeVecRes_FPOWI(SDNode *N);
684  SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
685  SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
686  SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
687  SDValue ScalarizeVecRes_VSELECT(SDNode *N);
688  SDValue ScalarizeVecRes_SELECT(SDNode *N);
689  SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
690  SDValue ScalarizeVecRes_SETCC(SDNode *N);
691  SDValue ScalarizeVecRes_UNDEF(SDNode *N);
692  SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
693 
694  SDValue ScalarizeVecRes_SMULFIX(SDNode *N);
695 
696  // Vector Operand Scalarization: <1 x ty> -> ty.
697  bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
698  SDValue ScalarizeVecOp_BITCAST(SDNode *N);
699  SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
700  SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
701  SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
702  SDValue ScalarizeVecOp_VSELECT(SDNode *N);
703  SDValue ScalarizeVecOp_VSETCC(SDNode *N);
704  SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
705  SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
706 
707  //===--------------------------------------------------------------------===//
708  // Vector Splitting Support: LegalizeVectorTypes.cpp
709  //===--------------------------------------------------------------------===//
710 
711  /// Given a processed vector Op which was split into vectors of half the size,
712  /// this method returns the halves. The first elements of Op coincide with the
713  /// elements of Lo; the remaining elements of Op coincide with the elements of
714  /// Hi: Op is what you would get by concatenating Lo and Hi.
715  /// For example, if Op is a v8i32 that was split into two v4i32's, then this
716  /// method returns the two v4i32's, with Lo corresponding to the first 4
717  /// elements of Op, and Hi to the last 4 elements.
718  void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
719  void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
720 
721  // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
722  void SplitVectorResult(SDNode *N, unsigned ResNo);
723  void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
724  void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
725  void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
726  void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
727  void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
728  void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi);
729  void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi);
730 
731  void SplitVecRes_SMULFIX(SDNode *N, SDValue &Lo, SDValue &Hi);
732 
733  void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
734  void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
735  void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
736  void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
737  void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
738  void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
739  void SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo, SDValue &Hi);
740  void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
741  void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi);
742  void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi);
743  void SplitVecRes_MGATHER(MaskedGatherSDNode *MGT, SDValue &Lo, SDValue &Hi);
744  void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
745  void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
746  void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
747  SDValue &Hi);
748 
749  // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
750  bool SplitVectorOperand(SDNode *N, unsigned OpNo);
751  SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
752  SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo);
753  SDValue SplitVecOp_UnaryOp(SDNode *N);
754  SDValue SplitVecOp_TruncateHelper(SDNode *N);
755 
756  SDValue SplitVecOp_BITCAST(SDNode *N);
757  SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
758  SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
759  SDValue SplitVecOp_ExtVecInRegOp(SDNode *N);
760  SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
761  SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
762  SDValue SplitVecOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
763  SDValue SplitVecOp_MGATHER(MaskedGatherSDNode *MGT, unsigned OpNo);
764  SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
765  SDValue SplitVecOp_VSETCC(SDNode *N);
766  SDValue SplitVecOp_FP_ROUND(SDNode *N);
767  SDValue SplitVecOp_FCOPYSIGN(SDNode *N);
768 
769  //===--------------------------------------------------------------------===//
770  // Vector Widening Support: LegalizeVectorTypes.cpp
771  //===--------------------------------------------------------------------===//
772 
773  /// Given a processed vector Op which was widened into a larger vector, this
774  /// method returns the larger vector. The elements of the returned vector
775  /// consist of the elements of Op followed by elements containing rubbish.
776  /// For example, if Op is a v2i32 that was widened to a v4i32, then this
777  /// method returns a v4i32 for which the first two elements are the same as
778  /// those of Op, while the last two elements contain rubbish.
779  SDValue GetWidenedVector(SDValue Op) {
780  TableId &WidenedId = WidenedVectors[getTableId(Op)];
781  SDValue WidenedOp = getSDValue(WidenedId);
782  assert(WidenedOp.getNode() && "Operand wasn't widened?");
783  return WidenedOp;
784  }
785  void SetWidenedVector(SDValue Op, SDValue Result);
786 
787  // Widen Vector Result Promotion.
788  void WidenVectorResult(SDNode *N, unsigned ResNo);
789  SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
790  SDValue WidenVecRes_BITCAST(SDNode* N);
791  SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
792  SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
793  SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N);
794  SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
795  SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
796  SDValue WidenVecRes_LOAD(SDNode* N);
797  SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
798  SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N);
799  SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
800  SDValue WidenVecRes_SELECT(SDNode* N);
801  SDValue WidenVSELECTAndMask(SDNode *N);
802  SDValue WidenVecRes_SELECT_CC(SDNode* N);
803  SDValue WidenVecRes_SETCC(SDNode* N);
804  SDValue WidenVecRes_UNDEF(SDNode *N);
805  SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
806 
807  SDValue WidenVecRes_Ternary(SDNode *N);
808  SDValue WidenVecRes_Binary(SDNode *N);
809  SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
810  SDValue WidenVecRes_StrictFP(SDNode *N);
811  SDValue WidenVecRes_Convert(SDNode *N);
812  SDValue WidenVecRes_FCOPYSIGN(SDNode *N);
813  SDValue WidenVecRes_POWI(SDNode *N);
814  SDValue WidenVecRes_Shift(SDNode *N);
815  SDValue WidenVecRes_Unary(SDNode *N);
816  SDValue WidenVecRes_InregOp(SDNode *N);
817 
818  // Widen Vector Operand.
819  bool WidenVectorOperand(SDNode *N, unsigned OpNo);
820  SDValue WidenVecOp_BITCAST(SDNode *N);
821  SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
822  SDValue WidenVecOp_EXTEND(SDNode *N);
823  SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
824  SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
825  SDValue WidenVecOp_STORE(SDNode* N);
826  SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
827  SDValue WidenVecOp_MGATHER(SDNode* N, unsigned OpNo);
828  SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo);
829  SDValue WidenVecOp_SETCC(SDNode* N);
830 
831  SDValue WidenVecOp_Convert(SDNode *N);
832  SDValue WidenVecOp_FCOPYSIGN(SDNode *N);
833 
834  //===--------------------------------------------------------------------===//
835  // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
836  //===--------------------------------------------------------------------===//
837 
838  /// Helper function to generate a set of loads to load a vector with a
839  /// resulting wider type. It takes:
840  /// LdChain: list of chains for the load to be generated.
841  /// Ld: load to widen
842  SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
843  LoadSDNode *LD);
844 
845  /// Helper function to generate a set of extension loads to load a vector with
846  /// a resulting wider type. It takes:
847  /// LdChain: list of chains for the load to be generated.
848  /// Ld: load to widen
849  /// ExtType: extension element type
850  SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
852 
853  /// Helper function to generate a set of stores to store a widen vector into
854  /// non-widen memory.
855  /// StChain: list of chains for the stores we have generated
856  /// ST: store of a widen value
857  void GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
858 
859  /// Helper function to generate a set of stores to store a truncate widen
860  /// vector into non-widen memory.
861  /// StChain: list of chains for the stores we have generated
862  /// ST: store of a widen value
863  void GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
864  StoreSDNode *ST);
865 
866  /// Modifies a vector input (widen or narrows) to a vector of NVT. The
867  /// input vector must have the same element type as NVT.
868  /// When FillWithZeroes is "on" the vector will be widened with zeroes.
869  /// By default, the vector will be widened with undefined values.
870  SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false);
871 
872  /// Return a mask of vector type MaskVT to replace InMask. Also adjust
873  /// MaskVT to ToMaskVT if needed with vector extension or truncation.
874  SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT);
875 
876  //===--------------------------------------------------------------------===//
877  // Generic Splitting: LegalizeTypesGeneric.cpp
878  //===--------------------------------------------------------------------===//
879 
880  // Legalization methods which only use that the illegal type is split into two
881  // not necessarily identical types. As such they can be used for splitting
882  // vectors and expanding integers and floats.
883 
884  void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
885  if (Op.getValueType().isVector())
886  GetSplitVector(Op, Lo, Hi);
887  else if (Op.getValueType().isInteger())
888  GetExpandedInteger(Op, Lo, Hi);
889  else
890  GetExpandedFloat(Op, Lo, Hi);
891  }
892 
893  /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
894  /// given value.
895  void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
896 
897  // Generic Result Splitting.
898  void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
899  SDValue &Lo, SDValue &Hi);
900  void SplitRes_SELECT (SDNode *N, SDValue &Lo, SDValue &Hi);
901  void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi);
902  void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi);
903 
904  //===--------------------------------------------------------------------===//
905  // Generic Expansion: LegalizeTypesGeneric.cpp
906  //===--------------------------------------------------------------------===//
907 
908  // Legalization methods which only use that the illegal type is split into two
909  // identical types of half the size, and that the Lo/Hi part is stored first
910  // in memory on little/big-endian machines, followed by the Hi/Lo part. As
911  // such they can be used for expanding integers and floats.
912 
913  void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
914  if (Op.getValueType().isInteger())
915  GetExpandedInteger(Op, Lo, Hi);
916  else
917  GetExpandedFloat(Op, Lo, Hi);
918  }
919 
920 
921  /// This function will split the integer \p Op into \p NumElements
922  /// operations of type \p EltVT and store them in \p Ops.
923  void IntegerToVector(SDValue Op, unsigned NumElements,
924  SmallVectorImpl<SDValue> &Ops, EVT EltVT);
925 
926  // Generic Result Expansion.
927  void ExpandRes_MERGE_VALUES (SDNode *N, unsigned ResNo,
928  SDValue &Lo, SDValue &Hi);
929  void ExpandRes_BITCAST (SDNode *N, SDValue &Lo, SDValue &Hi);
930  void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi);
931  void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi);
932  void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
933  void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi);
934  void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi);
935 
936  // Generic Operand Expansion.
937  SDValue ExpandOp_BITCAST (SDNode *N);
938  SDValue ExpandOp_BUILD_VECTOR (SDNode *N);
939  SDValue ExpandOp_EXTRACT_ELEMENT (SDNode *N);
940  SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
941  SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
942  SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo);
943 };
944 
945 } // end namespace llvm.
946 
947 #endif
EVT getValueType() const
Return the ValueType of the referenced return value.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
This class represents lattice values for constants.
Definition: AllocatorList.h:24
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition: ValueTypes.h:260
Libcall
RTLIB::Libcall enum - This enum defines all of the runtime library calls the backend can emit...
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition: ValueTypes.h:141
This takes an arbitrary SelectionDAG as input and hacks on it until only value types the target machi...
Definition: LegalizeTypes.h:32
void setNodeId(int Id)
Set unique node id.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
const DataLayout & getDataLayout() const
Definition: SelectionDAG.h:401
This is an SDNode representing atomic operations.
SelectionDAG & getDAG() const
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
This class is used to represent an MSTORE node.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out...
Definition: ISDOpcodes.h:959
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification, or lowering of the constant.
Definition: ISDOpcodes.h:125
This class is used to represent ISD::STORE nodes.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
Definition: ISDOpcodes.h:934
Extended Value Type.
Definition: ValueTypes.h:34
NodeIdFlags
This pass uses the NodeId on the SDNodes to hold information about the state of the node...
Definition: LegalizeTypes.h:38
SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value...
void NoteDeletion(SDNode *Old, SDNode *New)
BlockVerifier::State From
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:222
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
Class for arbitrary precision integers.
Definition: APInt.h:70
bool isVector() const
Return true if this is a vector value type.
Definition: ValueTypes.h:151
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition: ISDOpcodes.h:486
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
#define LLVM_LIBRARY_VISIBILITY
LLVM_LIBRARY_VISIBILITY - If a class marked with this attribute is linked into a shared library...
Definition: Compiler.h:108
This class is used to represent an MSCATTER node.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
This class is used to represent an MLOAD node.
This class is used to represent an MGATHER node.
SDValue getValueType(EVT)
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition: ValueTypes.h:126
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation...
LLVMContext * getContext() const
Definition: SelectionDAG.h:407
This file describes how to lower LLVM code to machine code.
DAGTypeLegalizer(SelectionDAG &dag)
This class is used to represent ISD::LOAD nodes.