LLVM  8.0.1
TruncInstCombine.cpp
Go to the documentation of this file.
1 //===- TruncInstCombine.cpp -----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // TruncInstCombine - looks for expression dags post-dominated by TruncInst and
11 // for each eligible dag, it will create a reduced bit-width expression, replace
12 // the old expression with this new one and remove the old expression.
13 // Eligible expression dag is such that:
14 // 1. Contains only supported instructions.
15 // 2. Supported leaves: ZExtInst, SExtInst, TruncInst and Constant value.
16 // 3. Can be evaluated into type with reduced legal bit-width.
17 // 4. All instructions in the dag must not have users outside the dag.
18 // The only exception is for {ZExt, SExt}Inst with operand type equal to
19 // the new reduced type evaluated in (3).
20 //
21 // The motivation for this optimization is that evaluating and expression using
22 // smaller bit-width is preferable, especially for vectorization where we can
23 // fit more values in one vectorized instruction. In addition, this optimization
24 // may decrease the number of cast instructions, but will not increase it.
25 //
26 //===----------------------------------------------------------------------===//
27 
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/IRBuilder.h"
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "aggressive-instcombine"
39 
40 /// Given an instruction and a container, it fills all the relevant operands of
41 /// that instruction, with respect to the Trunc expression dag optimizaton.
43  unsigned Opc = I->getOpcode();
44  switch (Opc) {
45  case Instruction::Trunc:
46  case Instruction::ZExt:
47  case Instruction::SExt:
48  // These CastInst are considered leaves of the evaluated expression, thus,
49  // their operands are not relevent.
50  break;
51  case Instruction::Add:
52  case Instruction::Sub:
53  case Instruction::Mul:
54  case Instruction::And:
55  case Instruction::Or:
56  case Instruction::Xor:
57  Ops.push_back(I->getOperand(0));
58  Ops.push_back(I->getOperand(1));
59  break;
60  default:
61  llvm_unreachable("Unreachable!");
62  }
63 }
64 
65 bool TruncInstCombine::buildTruncExpressionDag() {
66  SmallVector<Value *, 8> Worklist;
68  // Clear old expression dag.
69  InstInfoMap.clear();
70 
71  Worklist.push_back(CurrentTruncInst->getOperand(0));
72 
73  while (!Worklist.empty()) {
74  Value *Curr = Worklist.back();
75 
76  if (isa<Constant>(Curr)) {
77  Worklist.pop_back();
78  continue;
79  }
80 
81  auto *I = dyn_cast<Instruction>(Curr);
82  if (!I)
83  return false;
84 
85  if (!Stack.empty() && Stack.back() == I) {
86  // Already handled all instruction operands, can remove it from both the
87  // Worklist and the Stack, and add it to the instruction info map.
88  Worklist.pop_back();
89  Stack.pop_back();
90  // Insert I to the Info map.
91  InstInfoMap.insert(std::make_pair(I, Info()));
92  continue;
93  }
94 
95  if (InstInfoMap.count(I)) {
96  Worklist.pop_back();
97  continue;
98  }
99 
100  // Add the instruction to the stack before start handling its operands.
101  Stack.push_back(I);
102 
103  unsigned Opc = I->getOpcode();
104  switch (Opc) {
105  case Instruction::Trunc:
106  case Instruction::ZExt:
107  case Instruction::SExt:
108  // trunc(trunc(x)) -> trunc(x)
109  // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
110  // trunc(ext(x)) -> trunc(x) if the source type is larger than the new
111  // dest
112  break;
113  case Instruction::Add:
114  case Instruction::Sub:
115  case Instruction::Mul:
116  case Instruction::And:
117  case Instruction::Or:
118  case Instruction::Xor: {
119  SmallVector<Value *, 2> Operands;
120  getRelevantOperands(I, Operands);
121  for (Value *Operand : Operands)
122  Worklist.push_back(Operand);
123  break;
124  }
125  default:
126  // TODO: Can handle more cases here:
127  // 1. select, shufflevector, extractelement, insertelement
128  // 2. udiv, urem
129  // 3. shl, lshr, ashr
130  // 4. phi node(and loop handling)
131  // ...
132  return false;
133  }
134  }
135  return true;
136 }
137 
138 unsigned TruncInstCombine::getMinBitWidth() {
139  SmallVector<Value *, 8> Worklist;
141 
142  Value *Src = CurrentTruncInst->getOperand(0);
143  Type *DstTy = CurrentTruncInst->getType();
144  unsigned TruncBitWidth = DstTy->getScalarSizeInBits();
145  unsigned OrigBitWidth =
146  CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();
147 
148  if (isa<Constant>(Src))
149  return TruncBitWidth;
150 
151  Worklist.push_back(Src);
152  InstInfoMap[cast<Instruction>(Src)].ValidBitWidth = TruncBitWidth;
153 
154  while (!Worklist.empty()) {
155  Value *Curr = Worklist.back();
156 
157  if (isa<Constant>(Curr)) {
158  Worklist.pop_back();
159  continue;
160  }
161 
162  // Otherwise, it must be an instruction.
163  auto *I = cast<Instruction>(Curr);
164 
165  auto &Info = InstInfoMap[I];
166 
167  SmallVector<Value *, 2> Operands;
168  getRelevantOperands(I, Operands);
169 
170  if (!Stack.empty() && Stack.back() == I) {
171  // Already handled all instruction operands, can remove it from both, the
172  // Worklist and the Stack, and update MinBitWidth.
173  Worklist.pop_back();
174  Stack.pop_back();
175  for (auto *Operand : Operands)
176  if (auto *IOp = dyn_cast<Instruction>(Operand))
177  Info.MinBitWidth =
178  std::max(Info.MinBitWidth, InstInfoMap[IOp].MinBitWidth);
179  continue;
180  }
181 
182  // Add the instruction to the stack before start handling its operands.
183  Stack.push_back(I);
184  unsigned ValidBitWidth = Info.ValidBitWidth;
185 
186  // Update minimum bit-width before handling its operands. This is required
187  // when the instruction is part of a loop.
188  Info.MinBitWidth = std::max(Info.MinBitWidth, Info.ValidBitWidth);
189 
190  for (auto *Operand : Operands)
191  if (auto *IOp = dyn_cast<Instruction>(Operand)) {
192  // If we already calculated the minimum bit-width for this valid
193  // bit-width, or for a smaller valid bit-width, then just keep the
194  // answer we already calculated.
195  unsigned IOpBitwidth = InstInfoMap.lookup(IOp).ValidBitWidth;
196  if (IOpBitwidth >= ValidBitWidth)
197  continue;
198  InstInfoMap[IOp].ValidBitWidth = std::max(ValidBitWidth, IOpBitwidth);
199  Worklist.push_back(IOp);
200  }
201  }
202  unsigned MinBitWidth = InstInfoMap.lookup(cast<Instruction>(Src)).MinBitWidth;
203  assert(MinBitWidth >= TruncBitWidth);
204 
205  if (MinBitWidth > TruncBitWidth) {
206  // In this case reducing expression with vector type might generate a new
207  // vector type, which is not preferable as it might result in generating
208  // sub-optimal code.
209  if (DstTy->isVectorTy())
210  return OrigBitWidth;
211  // Use the smallest integer type in the range [MinBitWidth, OrigBitWidth).
212  Type *Ty = DL.getSmallestLegalIntType(DstTy->getContext(), MinBitWidth);
213  // Update minimum bit-width with the new destination type bit-width if
214  // succeeded to find such, otherwise, with original bit-width.
215  MinBitWidth = Ty ? Ty->getScalarSizeInBits() : OrigBitWidth;
216  } else { // MinBitWidth == TruncBitWidth
217  // In this case the expression can be evaluated with the trunc instruction
218  // destination type, and trunc instruction can be omitted. However, we
219  // should not perform the evaluation if the original type is a legal scalar
220  // type and the target type is illegal.
221  bool FromLegal = MinBitWidth == 1 || DL.isLegalInteger(OrigBitWidth);
222  bool ToLegal = MinBitWidth == 1 || DL.isLegalInteger(MinBitWidth);
223  if (!DstTy->isVectorTy() && FromLegal && !ToLegal)
224  return OrigBitWidth;
225  }
226  return MinBitWidth;
227 }
228 
229 Type *TruncInstCombine::getBestTruncatedType() {
230  if (!buildTruncExpressionDag())
231  return nullptr;
232 
233  // We don't want to duplicate instructions, which isn't profitable. Thus, we
234  // can't shrink something that has multiple users, unless all users are
235  // post-dominated by the trunc instruction, i.e., were visited during the
236  // expression evaluation.
237  unsigned DesiredBitWidth = 0;
238  for (auto Itr : InstInfoMap) {
239  Instruction *I = Itr.first;
240  if (I->hasOneUse())
241  continue;
242  bool IsExtInst = (isa<ZExtInst>(I) || isa<SExtInst>(I));
243  for (auto *U : I->users())
244  if (auto *UI = dyn_cast<Instruction>(U))
245  if (UI != CurrentTruncInst && !InstInfoMap.count(UI)) {
246  if (!IsExtInst)
247  return nullptr;
248  // If this is an extension from the dest type, we can eliminate it,
249  // even if it has multiple users. Thus, update the DesiredBitWidth and
250  // validate all extension instructions agrees on same DesiredBitWidth.
251  unsigned ExtInstBitWidth =
253  if (DesiredBitWidth && DesiredBitWidth != ExtInstBitWidth)
254  return nullptr;
255  DesiredBitWidth = ExtInstBitWidth;
256  }
257  }
258 
259  unsigned OrigBitWidth =
260  CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();
261 
262  // Calculate minimum allowed bit-width allowed for shrinking the currently
263  // visited truncate's operand.
264  unsigned MinBitWidth = getMinBitWidth();
265 
266  // Check that we can shrink to smaller bit-width than original one and that
267  // it is similar to the DesiredBitWidth is such exists.
268  if (MinBitWidth >= OrigBitWidth ||
269  (DesiredBitWidth && DesiredBitWidth != MinBitWidth))
270  return nullptr;
271 
272  return IntegerType::get(CurrentTruncInst->getContext(), MinBitWidth);
273 }
274 
275 /// Given a reduced scalar type \p Ty and a \p V value, return a reduced type
276 /// for \p V, according to its type, if it vector type, return the vector
277 /// version of \p Ty, otherwise return \p Ty.
278 static Type *getReducedType(Value *V, Type *Ty) {
279  assert(Ty && !Ty->isVectorTy() && "Expect Scalar Type");
280  if (auto *VTy = dyn_cast<VectorType>(V->getType()))
281  return VectorType::get(Ty, VTy->getNumElements());
282  return Ty;
283 }
284 
285 Value *TruncInstCombine::getReducedOperand(Value *V, Type *SclTy) {
286  Type *Ty = getReducedType(V, SclTy);
287  if (auto *C = dyn_cast<Constant>(V)) {
288  C = ConstantExpr::getIntegerCast(C, Ty, false);
289  // If we got a constantexpr back, try to simplify it with DL info.
290  if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
291  C = FoldedC;
292  return C;
293  }
294 
295  auto *I = cast<Instruction>(V);
296  Info Entry = InstInfoMap.lookup(I);
297  assert(Entry.NewValue);
298  return Entry.NewValue;
299 }
300 
301 void TruncInstCombine::ReduceExpressionDag(Type *SclTy) {
302  for (auto &Itr : InstInfoMap) { // Forward
303  Instruction *I = Itr.first;
304  TruncInstCombine::Info &NodeInfo = Itr.second;
305 
306  assert(!NodeInfo.NewValue && "Instruction has been evaluated");
307 
308  IRBuilder<> Builder(I);
309  Value *Res = nullptr;
310  unsigned Opc = I->getOpcode();
311  switch (Opc) {
312  case Instruction::Trunc:
313  case Instruction::ZExt:
314  case Instruction::SExt: {
315  Type *Ty = getReducedType(I, SclTy);
316  // If the source type of the cast is the type we're trying for then we can
317  // just return the source. There's no need to insert it because it is not
318  // new.
319  if (I->getOperand(0)->getType() == Ty) {
320  assert(!isa<TruncInst>(I) && "Cannot reach here with TruncInst");
321  NodeInfo.NewValue = I->getOperand(0);
322  continue;
323  }
324  // Otherwise, must be the same type of cast, so just reinsert a new one.
325  // This also handles the case of zext(trunc(x)) -> zext(x).
326  Res = Builder.CreateIntCast(I->getOperand(0), Ty,
327  Opc == Instruction::SExt);
328 
329  // Update Worklist entries with new value if needed.
330  // There are three possible changes to the Worklist:
331  // 1. Update Old-TruncInst -> New-TruncInst.
332  // 2. Remove Old-TruncInst (if New node is not TruncInst).
333  // 3. Add New-TruncInst (if Old node was not TruncInst).
334  auto Entry = find(Worklist, I);
335  if (Entry != Worklist.end()) {
336  if (auto *NewCI = dyn_cast<TruncInst>(Res))
337  *Entry = NewCI;
338  else
339  Worklist.erase(Entry);
340  } else if (auto *NewCI = dyn_cast<TruncInst>(Res))
341  Worklist.push_back(NewCI);
342  break;
343  }
344  case Instruction::Add:
345  case Instruction::Sub:
346  case Instruction::Mul:
347  case Instruction::And:
348  case Instruction::Or:
349  case Instruction::Xor: {
350  Value *LHS = getReducedOperand(I->getOperand(0), SclTy);
351  Value *RHS = getReducedOperand(I->getOperand(1), SclTy);
352  Res = Builder.CreateBinOp((Instruction::BinaryOps)Opc, LHS, RHS);
353  break;
354  }
355  default:
356  llvm_unreachable("Unhandled instruction");
357  }
358 
359  NodeInfo.NewValue = Res;
360  if (auto *ResI = dyn_cast<Instruction>(Res))
361  ResI->takeName(I);
362  }
363 
364  Value *Res = getReducedOperand(CurrentTruncInst->getOperand(0), SclTy);
365  Type *DstTy = CurrentTruncInst->getType();
366  if (Res->getType() != DstTy) {
367  IRBuilder<> Builder(CurrentTruncInst);
368  Res = Builder.CreateIntCast(Res, DstTy, false);
369  if (auto *ResI = dyn_cast<Instruction>(Res))
370  ResI->takeName(CurrentTruncInst);
371  }
372  CurrentTruncInst->replaceAllUsesWith(Res);
373 
374  // Erase old expression dag, which was replaced by the reduced expression dag.
375  // We iterate backward, which means we visit the instruction before we visit
376  // any of its operands, this way, when we get to the operand, we already
377  // removed the instructions (from the expression dag) that uses it.
378  CurrentTruncInst->eraseFromParent();
379  for (auto I = InstInfoMap.rbegin(), E = InstInfoMap.rend(); I != E; ++I) {
380  // We still need to check that the instruction has no users before we erase
381  // it, because {SExt, ZExt}Inst Instruction might have other users that was
382  // not reduced, in such case, we need to keep that instruction.
383  if (I->first->use_empty())
384  I->first->eraseFromParent();
385  }
386 }
387 
389  bool MadeIRChange = false;
390 
391  // Collect all TruncInst in the function into the Worklist for evaluating.
392  for (auto &BB : F) {
393  // Ignore unreachable basic block.
394  if (!DT.isReachableFromEntry(&BB))
395  continue;
396  for (auto &I : BB)
397  if (auto *CI = dyn_cast<TruncInst>(&I))
398  Worklist.push_back(CI);
399  }
400 
401  // Process all TruncInst in the Worklist, for each instruction:
402  // 1. Check if it dominates an eligible expression dag to be reduced.
403  // 2. Create a reduced expression dag and replace the old one with it.
404  while (!Worklist.empty()) {
405  CurrentTruncInst = Worklist.pop_back_val();
406 
407  if (Type *NewDstSclTy = getBestTruncatedType()) {
408  LLVM_DEBUG(
409  dbgs() << "ICE: TruncInstCombine reducing type of expression dag "
410  "dominated by: "
411  << CurrentTruncInst << '\n');
412  ReduceExpressionDag(NewDstSclTy);
413  MadeIRChange = true;
414  }
415  }
416 
417  return MadeIRChange;
418 }
uint64_t CallInst * C
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks &#39;this&#39; from the containing basic block and deletes it.
Definition: Instruction.cpp:68
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1298
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
This class represents lattice values for constants.
Definition: AllocatorList.h:24
void push_back(const T &Elt)
Definition: SmallVector.h:218
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:705
F(f)
static void getRelevantOperands(Instruction *I, SmallVectorImpl< Value *> &Ops)
Given an instruction and a container, it fills all the relevant operands of that instruction, with respect to the Trunc expression dag optimizaton.
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:230
Type * getSmallestLegalIntType(LLVMContext &C, unsigned Width=0) const
Returns the smallest integer type with size at least as big as Width bits.
Definition: DataLayout.cpp:765
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Definition: Dominators.cpp:300
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:130
static Constant * getIntegerCast(Constant *C, Type *Ty, bool isSigned)
Create a ZExt, Bitcast or Trunc for integer -> integer casts.
Definition: Constants.cpp:1613
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:743
Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Attempt to fold the constant using the specified DataLayout.
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:126
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:429
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:291
Value * getOperand(unsigned i) const
Definition: User.h:170
Analysis containing CSE Info
Definition: CSEInfo.cpp:21
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range))
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1207
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool run(Function &F)
Perform TruncInst pattern optimization on given function.
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:240
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type...
Definition: Type.cpp:130
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
Definition: IRBuilder.h:1801
bool isLegalInteger(uint64_t Width) const
Returns true if the specified type is known to be a native integer type supported by the CPU...
Definition: DataLayout.h:243
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
iterator_range< user_iterator > users()
Definition: Value.h:400
static Type * getReducedType(Value *V, Type *Ty)
Given a reduced scalar type Ty and a V value, return a reduced type for V, according to its type...
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
#define I(x, y, z)
Definition: MD5.cpp:58
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
LLVM Value Representation.
Definition: Value.h:73
static VectorType * get(Type *ElementType, unsigned NumElements)
This static method is the primary way to construct an VectorType.
Definition: Type.cpp:606
bool hasOneUse() const
Return true if there is exactly one user of this value.
Definition: Value.h:413
#define LLVM_DEBUG(X)
Definition: Debug.h:123