LLVM  8.0.1
VPlanHCFGBuilder.cpp
Go to the documentation of this file.
1 //===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file implements the construction of a VPlan-based Hierarchical CFG
12 /// (H-CFG) for an incoming IR. This construction comprises the following
13 /// components and steps:
14 //
15 /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
16 /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
17 /// Region) is created to enclose and serve as parent of all the VPBasicBlocks
18 /// in the plain CFG.
19 /// NOTE: At this point, there is a direct correspondence between all the
20 /// VPBasicBlocks created for the initial plain CFG and the incoming
21 /// BasicBlocks. However, this might change in the future.
22 ///
23 //===----------------------------------------------------------------------===//
24 
25 #include "VPlanHCFGBuilder.h"
28 
29 #define DEBUG_TYPE "loop-vectorize"
30 
31 using namespace llvm;
32 
33 namespace {
34 // Class that is used to build the plain CFG for the incoming IR.
35 class PlainCFGBuilder {
36 private:
37  // The outermost loop of the input loop nest considered for vectorization.
38  Loop *TheLoop;
39 
40  // Loop Info analysis.
41  LoopInfo *LI;
42 
43  // Vectorization plan that we are working on.
44  VPlan &Plan;
45 
46  // Output Top Region.
47  VPRegionBlock *TopRegion = nullptr;
48 
49  // Builder of the VPlan instruction-level representation.
50  VPBuilder VPIRBuilder;
51 
52  // NOTE: The following maps are intentionally destroyed after the plain CFG
53  // construction because subsequent VPlan-to-VPlan transformation may
54  // invalidate them.
55  // Map incoming BasicBlocks to their newly-created VPBasicBlocks.
57  // Map incoming Value definitions to their newly-created VPValues.
58  DenseMap<Value *, VPValue *> IRDef2VPValue;
59 
60  // Hold phi node's that need to be fixed once the plain CFG has been built.
61  SmallVector<PHINode *, 8> PhisToFix;
62 
63  // Utility functions.
64  void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
65  void fixPhiNodes();
66  VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
67  bool isExternalDef(Value *Val);
68  VPValue *getOrCreateVPOperand(Value *IRVal);
69  void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);
70 
71 public:
72  PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
73  : TheLoop(Lp), LI(LI), Plan(P) {}
74 
75  // Build the plain CFG and return its Top Region.
76  VPRegionBlock *buildPlainCFG();
77 };
78 } // anonymous namespace
79 
80 // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
81 // must have no predecessors.
82 void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
84  // Collect VPBB predecessors.
85  for (BasicBlock *Pred : predecessors(BB))
86  VPBBPreds.push_back(getOrCreateVPBB(Pred));
87 
88  VPBB->setPredecessors(VPBBPreds);
89 }
90 
91 // Add operands to VPInstructions representing phi nodes from the input IR.
92 void PlainCFGBuilder::fixPhiNodes() {
93  for (auto *Phi : PhisToFix) {
94  assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
95  VPValue *VPVal = IRDef2VPValue[Phi];
96  assert(isa<VPInstruction>(VPVal) && "Expected VPInstruction for phi node.");
97  auto *VPPhi = cast<VPInstruction>(VPVal);
98  assert(VPPhi->getNumOperands() == 0 &&
99  "Expected VPInstruction with no operands.");
100 
101  for (Value *Op : Phi->operands())
102  VPPhi->addOperand(getOrCreateVPOperand(Op));
103  }
104 }
105 
106 // Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an
107 // existing one if it was already created.
108 VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
109  auto BlockIt = BB2VPBB.find(BB);
110  if (BlockIt != BB2VPBB.end())
111  // Retrieve existing VPBB.
112  return BlockIt->second;
113 
114  // Create new VPBB.
115  LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n");
116  VPBasicBlock *VPBB = new VPBasicBlock(BB->getName());
117  BB2VPBB[BB] = VPBB;
118  VPBB->setParent(TopRegion);
119  return VPBB;
120 }
121 
122 // Return true if \p Val is considered an external definition. An external
123 // definition is either:
124 // 1. A Value that is not an Instruction. This will be refined in the future.
125 // 2. An Instruction that is outside of the CFG snippet represented in VPlan,
126 // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
127 // outermost loop exits.
128 bool PlainCFGBuilder::isExternalDef(Value *Val) {
129  // All the Values that are not Instructions are considered external
130  // definitions for now.
131  Instruction *Inst = dyn_cast<Instruction>(Val);
132  if (!Inst)
133  return true;
134 
135  BasicBlock *InstParent = Inst->getParent();
136  assert(InstParent && "Expected instruction parent.");
137 
138  // Check whether Instruction definition is in loop PH.
139  BasicBlock *PH = TheLoop->getLoopPreheader();
140  assert(PH && "Expected loop pre-header.");
141 
142  if (InstParent == PH)
143  // Instruction definition is in outermost loop PH.
144  return false;
145 
146  // Check whether Instruction definition is in the loop exit.
147  BasicBlock *Exit = TheLoop->getUniqueExitBlock();
148  assert(Exit && "Expected loop with single exit.");
149  if (InstParent == Exit) {
150  // Instruction definition is in outermost loop exit.
151  return false;
152  }
153 
154  // Check whether Instruction definition is in loop body.
155  return !TheLoop->contains(Inst);
156 }
157 
158 // Create a new VPValue or retrieve an existing one for the Instruction's
159 // operand \p IRVal. This function must only be used to create/retrieve VPValues
160 // for *Instruction's operands* and not to create regular VPInstruction's. For
161 // the latter, please, look at 'createVPInstructionsForVPBB'.
162 VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
163  auto VPValIt = IRDef2VPValue.find(IRVal);
164  if (VPValIt != IRDef2VPValue.end())
165  // Operand has an associated VPInstruction or VPValue that was previously
166  // created.
167  return VPValIt->second;
168 
169  // Operand doesn't have a previously created VPInstruction/VPValue. This
170  // means that operand is:
171  // A) a definition external to VPlan,
172  // B) any other Value without specific representation in VPlan.
173  // For now, we use VPValue to represent A and B and classify both as external
174  // definitions. We may introduce specific VPValue subclasses for them in the
175  // future.
176  assert(isExternalDef(IRVal) && "Expected external definition as operand.");
177 
178  // A and B: Create VPValue and add it to the pool of external definitions and
179  // to the Value->VPValue map.
180  VPValue *NewVPVal = new VPValue(IRVal);
181  Plan.addExternalDef(NewVPVal);
182  IRDef2VPValue[IRVal] = NewVPVal;
183  return NewVPVal;
184 }
185 
186 // Create new VPInstructions in a VPBasicBlock, given its BasicBlock
187 // counterpart. This function must be invoked in RPO so that the operands of a
188 // VPInstruction in \p BB have been visited before (except for Phi nodes).
189 void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
190  BasicBlock *BB) {
191  VPIRBuilder.setInsertPoint(VPBB);
192  for (Instruction &InstRef : *BB) {
193  Instruction *Inst = &InstRef;
194 
195  // There shouldn't be any VPValue for Inst at this point. Otherwise, we
196  // visited Inst when we shouldn't, breaking the RPO traversal order.
197  assert(!IRDef2VPValue.count(Inst) &&
198  "Instruction shouldn't have been visited.");
199 
200  if (auto *Br = dyn_cast<BranchInst>(Inst)) {
201  // Branch instruction is not explicitly represented in VPlan but we need
202  // to represent its condition bit when it's conditional.
203  if (Br->isConditional())
204  getOrCreateVPOperand(Br->getCondition());
205 
206  // Skip the rest of the Instruction processing for Branch instructions.
207  continue;
208  }
209 
210  VPInstruction *NewVPInst;
211  if (auto *Phi = dyn_cast<PHINode>(Inst)) {
212  // Phi node's operands may have not been visited at this point. We create
213  // an empty VPInstruction that we will fix once the whole plain CFG has
214  // been built.
215  NewVPInst = cast<VPInstruction>(VPIRBuilder.createNaryOp(
216  Inst->getOpcode(), {} /*No operands*/, Inst));
217  PhisToFix.push_back(Phi);
218  } else {
219  // Translate LLVM-IR operands into VPValue operands and set them in the
220  // new VPInstruction.
221  SmallVector<VPValue *, 4> VPOperands;
222  for (Value *Op : Inst->operands())
223  VPOperands.push_back(getOrCreateVPOperand(Op));
224 
225  // Build VPInstruction for any arbitraty Instruction without specific
226  // representation in VPlan.
227  NewVPInst = cast<VPInstruction>(
228  VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
229  }
230 
231  IRDef2VPValue[Inst] = NewVPInst;
232  }
233 }
234 
235 // Main interface to build the plain CFG.
236 VPRegionBlock *PlainCFGBuilder::buildPlainCFG() {
237  // 1. Create the Top Region. It will be the parent of all VPBBs.
238  TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/);
239 
240  // 2. Scan the body of the loop in a topological order to visit each basic
241  // block after having visited its predecessor basic blocks. Create a VPBB for
242  // each BB and link it to its successor and predecessor VPBBs. Note that
243  // predecessors must be set in the same order as they are in the incomming IR.
244  // Otherwise, there might be problems with existing phi nodes and algorithm
245  // based on predecessors traversal.
246 
247  // Loop PH needs to be explicitly visited since it's not taken into account by
248  // LoopBlocksDFS.
249  BasicBlock *PreheaderBB = TheLoop->getLoopPreheader();
250  assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
251  "Unexpected loop preheader");
252  VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB);
253  createVPInstructionsForVPBB(PreheaderVPBB, PreheaderBB);
254  // Create empty VPBB for Loop H so that we can link PH->H.
255  VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader());
256  // Preheader's predecessors will be set during the loop RPO traversal below.
257  PreheaderVPBB->setOneSuccessor(HeaderVPBB);
258 
259  LoopBlocksRPO RPO(TheLoop);
260  RPO.perform(LI);
261 
262  for (BasicBlock *BB : RPO) {
263  // Create or retrieve the VPBasicBlock for this BB and create its
264  // VPInstructions.
265  VPBasicBlock *VPBB = getOrCreateVPBB(BB);
266  createVPInstructionsForVPBB(VPBB, BB);
267 
268  // Set VPBB successors. We create empty VPBBs for successors if they don't
269  // exist already. Recipes will be created when the successor is visited
270  // during the RPO traversal.
271  Instruction *TI = BB->getTerminator();
272  assert(TI && "Terminator expected.");
273  unsigned NumSuccs = TI->getNumSuccessors();
274 
275  if (NumSuccs == 1) {
276  VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0));
277  assert(SuccVPBB && "VPBB Successor not found.");
278  VPBB->setOneSuccessor(SuccVPBB);
279  } else if (NumSuccs == 2) {
280  VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0));
281  assert(SuccVPBB0 && "Successor 0 not found.");
282  VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1));
283  assert(SuccVPBB1 && "Successor 1 not found.");
284 
285  // Get VPBB's condition bit.
286  assert(isa<BranchInst>(TI) && "Unsupported terminator!");
287  auto *Br = cast<BranchInst>(TI);
288  Value *BrCond = Br->getCondition();
289  // Look up the branch condition to get the corresponding VPValue
290  // representing the condition bit in VPlan (which may be in another VPBB).
291  assert(IRDef2VPValue.count(BrCond) &&
292  "Missing condition bit in IRDef2VPValue!");
293  VPValue *VPCondBit = IRDef2VPValue[BrCond];
294 
295  // Link successors using condition bit.
296  VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1, VPCondBit);
297  } else
298  llvm_unreachable("Number of successors not supported.");
299 
300  // Set VPBB predecessors in the same order as they are in the incoming BB.
301  setVPBBPredsFromBB(VPBB, BB);
302  }
303 
304  // 3. Process outermost loop exit. We created an empty VPBB for the loop
305  // single exit BB during the RPO traversal of the loop body but Instructions
306  // weren't visited because it's not part of the the loop.
307  BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
308  assert(LoopExitBB && "Loops with multiple exits are not supported.");
309  VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB];
310  createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB);
311  // Loop exit was already set as successor of the loop exiting BB.
312  // We only set its predecessor VPBB now.
313  setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB);
314 
315  // 4. The whole CFG has been built at this point so all the input Values must
316  // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
317  // VPlan operands.
318  fixPhiNodes();
319 
320  // 5. Final Top Region setup. Set outermost loop pre-header and single exit as
321  // Top Region entry and exit.
322  TopRegion->setEntry(PreheaderVPBB);
323  TopRegion->setExit(LoopExitVPBB);
324  return TopRegion;
325 }
326 
327 VPRegionBlock *VPlanHCFGBuilder::buildPlainCFG() {
328  PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
329  return PCFGBuilder.buildPlainCFG();
330 }
331 
332 // Public interface to build a H-CFG.
334  // Build Top Region enclosing the plain CFG and set it as VPlan entry.
335  VPRegionBlock *TopRegion = buildPlainCFG();
336  Plan.setEntry(TopRegion);
337  LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);
338 
339  Verifier.verifyHierarchicalCFG(TopRegion);
340 
341  // Compute plain CFG dom tree for VPLInfo.
342  VPDomTree.recalculate(*TopRegion);
343  LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
344  VPDomTree.print(dbgs()));
345 
346  // Compute VPLInfo and keep it in Plan.
347  VPLoopInfo &VPLInfo = Plan.getVPLoopInfo();
348  VPLInfo.analyze(VPDomTree);
349  LLVM_DEBUG(dbgs() << "VPLoop Info After buildPlainCFG:\n";
350  VPLInfo.print(dbgs()));
351 }
This class represents lattice values for constants.
Definition: AllocatorList.h:24
BasicBlock * getSuccessor(unsigned Idx) const
Return the specified successor. This instruction must be a terminator.
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition: VPlan.h:1130
void buildHierarchicalCFG()
Build H-CFG for TheLoop and update Plan accordingly.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition: VPlan.h:1050
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:138
This file provides a LoopVectorizationPlanner class.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:126
unsigned getNumSuccessors() const
Return the number of successors that this instruction has.
#define P(N)
void setOneSuccessor(VPBlockBase *Successor)
Set a given VPBlockBase Successor as the single successor of this VPBlockBase.
Definition: VPlan.h:497
VPlan-based builder utility analogous to IRBuilder.
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
void analyze(const DominatorTreeBase< BlockT, false > &DomTree)
Create the loop forest using a stable algorithm.
Definition: LoopInfoImpl.h:554
op_range operands()
Definition: User.h:238
void setPredecessors(ArrayRef< VPBlockBase *> NewPreds)
Set each VPBasicBlock in NewPreds as predecessor of this VPBlockBase.
Definition: VPlan.h:518
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:965
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
This file defines the VPlanHCFGBuilder class which contains the public interface (buildHierarchicalCF...
void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse, VPValue *Condition)
Set two given VPBlockBases IfTrue and IfFalse to be the two successors of this VPBlockBase.
Definition: VPlan.h:506
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:334
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
pred_range predecessors(BasicBlock *BB)
Definition: CFG.h:125
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:465
verify safepoint Safepoint IR Verifier
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
Definition: LoopIterator.h:173
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
LLVM Value Representation.
Definition: Value.h:73
rpo Deduce function attributes in RPO
void perform(LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
Definition: LoopIterator.h:181
#define LLVM_DEBUG(X)
Definition: Debug.h:123
This is a concrete Recipe that models a single VPlan-level instruction.
Definition: VPlan.h:611
void setParent(VPRegionBlock *P)
Definition: VPlan.h:409
const BasicBlock * getParent() const
Definition: Instruction.h:67