LLVM  8.0.1
LowerMemIntrinsics.cpp
Go to the documentation of this file.
1 //===- LowerMemIntrinsics.cpp ----------------------------------*- C++ -*--===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
12 #include "llvm/IR/IRBuilder.h"
13 #include "llvm/IR/IntrinsicInst.h"
15 
16 using namespace llvm;
17 
18 static unsigned getLoopOperandSizeInBytes(Type *Type) {
19  if (VectorType *VTy = dyn_cast<VectorType>(Type)) {
20  return VTy->getBitWidth() / 8;
21  }
22 
23  return Type->getPrimitiveSizeInBits() / 8;
24 }
25 
26 void llvm::createMemCpyLoopKnownSize(Instruction *InsertBefore, Value *SrcAddr,
27  Value *DstAddr, ConstantInt *CopyLen,
28  unsigned SrcAlign, unsigned DestAlign,
29  bool SrcIsVolatile, bool DstIsVolatile,
30  const TargetTransformInfo &TTI) {
31  // No need to expand zero length copies.
32  if (CopyLen->isZero())
33  return;
34 
35  BasicBlock *PreLoopBB = InsertBefore->getParent();
36  BasicBlock *PostLoopBB = nullptr;
37  Function *ParentFunc = PreLoopBB->getParent();
38  LLVMContext &Ctx = PreLoopBB->getContext();
39 
40  Type *TypeOfCopyLen = CopyLen->getType();
41  Type *LoopOpType =
42  TTI.getMemcpyLoopLoweringType(Ctx, CopyLen, SrcAlign, DestAlign);
43 
44  unsigned LoopOpSize = getLoopOperandSizeInBytes(LoopOpType);
45  uint64_t LoopEndCount = CopyLen->getZExtValue() / LoopOpSize;
46 
47  unsigned SrcAS = cast<PointerType>(SrcAddr->getType())->getAddressSpace();
48  unsigned DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
49 
50  if (LoopEndCount != 0) {
51  // Split
52  PostLoopBB = PreLoopBB->splitBasicBlock(InsertBefore, "memcpy-split");
53  BasicBlock *LoopBB =
54  BasicBlock::Create(Ctx, "load-store-loop", ParentFunc, PostLoopBB);
55  PreLoopBB->getTerminator()->setSuccessor(0, LoopBB);
56 
57  IRBuilder<> PLBuilder(PreLoopBB->getTerminator());
58 
59  // Cast the Src and Dst pointers to pointers to the loop operand type (if
60  // needed).
61  PointerType *SrcOpType = PointerType::get(LoopOpType, SrcAS);
62  PointerType *DstOpType = PointerType::get(LoopOpType, DstAS);
63  if (SrcAddr->getType() != SrcOpType) {
64  SrcAddr = PLBuilder.CreateBitCast(SrcAddr, SrcOpType);
65  }
66  if (DstAddr->getType() != DstOpType) {
67  DstAddr = PLBuilder.CreateBitCast(DstAddr, DstOpType);
68  }
69 
70  IRBuilder<> LoopBuilder(LoopBB);
71  PHINode *LoopIndex = LoopBuilder.CreatePHI(TypeOfCopyLen, 2, "loop-index");
72  LoopIndex->addIncoming(ConstantInt::get(TypeOfCopyLen, 0U), PreLoopBB);
73  // Loop Body
74  Value *SrcGEP =
75  LoopBuilder.CreateInBoundsGEP(LoopOpType, SrcAddr, LoopIndex);
76  Value *Load = LoopBuilder.CreateLoad(SrcGEP, SrcIsVolatile);
77  Value *DstGEP =
78  LoopBuilder.CreateInBoundsGEP(LoopOpType, DstAddr, LoopIndex);
79  LoopBuilder.CreateStore(Load, DstGEP, DstIsVolatile);
80 
81  Value *NewIndex =
82  LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(TypeOfCopyLen, 1U));
83  LoopIndex->addIncoming(NewIndex, LoopBB);
84 
85  // Create the loop branch condition.
86  Constant *LoopEndCI = ConstantInt::get(TypeOfCopyLen, LoopEndCount);
87  LoopBuilder.CreateCondBr(LoopBuilder.CreateICmpULT(NewIndex, LoopEndCI),
88  LoopBB, PostLoopBB);
89  }
90 
91  uint64_t BytesCopied = LoopEndCount * LoopOpSize;
92  uint64_t RemainingBytes = CopyLen->getZExtValue() - BytesCopied;
93  if (RemainingBytes) {
94  IRBuilder<> RBuilder(PostLoopBB ? PostLoopBB->getFirstNonPHI()
95  : InsertBefore);
96 
97  // Update the alignment based on the copy size used in the loop body.
98  SrcAlign = std::min(SrcAlign, LoopOpSize);
99  DestAlign = std::min(DestAlign, LoopOpSize);
100 
101  SmallVector<Type *, 5> RemainingOps;
102  TTI.getMemcpyLoopResidualLoweringType(RemainingOps, Ctx, RemainingBytes,
103  SrcAlign, DestAlign);
104 
105  for (auto OpTy : RemainingOps) {
106  // Calaculate the new index
107  unsigned OperandSize = getLoopOperandSizeInBytes(OpTy);
108  uint64_t GepIndex = BytesCopied / OperandSize;
109  assert(GepIndex * OperandSize == BytesCopied &&
110  "Division should have no Remainder!");
111  // Cast source to operand type and load
112  PointerType *SrcPtrType = PointerType::get(OpTy, SrcAS);
113  Value *CastedSrc = SrcAddr->getType() == SrcPtrType
114  ? SrcAddr
115  : RBuilder.CreateBitCast(SrcAddr, SrcPtrType);
116  Value *SrcGEP = RBuilder.CreateInBoundsGEP(
117  OpTy, CastedSrc, ConstantInt::get(TypeOfCopyLen, GepIndex));
118  Value *Load = RBuilder.CreateLoad(SrcGEP, SrcIsVolatile);
119 
120  // Cast destination to operand type and store.
121  PointerType *DstPtrType = PointerType::get(OpTy, DstAS);
122  Value *CastedDst = DstAddr->getType() == DstPtrType
123  ? DstAddr
124  : RBuilder.CreateBitCast(DstAddr, DstPtrType);
125  Value *DstGEP = RBuilder.CreateInBoundsGEP(
126  OpTy, CastedDst, ConstantInt::get(TypeOfCopyLen, GepIndex));
127  RBuilder.CreateStore(Load, DstGEP, DstIsVolatile);
128 
129  BytesCopied += OperandSize;
130  }
131  }
132  assert(BytesCopied == CopyLen->getZExtValue() &&
133  "Bytes copied should match size in the call!");
134 }
135 
137  Value *SrcAddr, Value *DstAddr,
138  Value *CopyLen, unsigned SrcAlign,
139  unsigned DestAlign, bool SrcIsVolatile,
140  bool DstIsVolatile,
141  const TargetTransformInfo &TTI) {
142  BasicBlock *PreLoopBB = InsertBefore->getParent();
143  BasicBlock *PostLoopBB =
144  PreLoopBB->splitBasicBlock(InsertBefore, "post-loop-memcpy-expansion");
145 
146  Function *ParentFunc = PreLoopBB->getParent();
147  LLVMContext &Ctx = PreLoopBB->getContext();
148 
149  Type *LoopOpType =
150  TTI.getMemcpyLoopLoweringType(Ctx, CopyLen, SrcAlign, DestAlign);
151  unsigned LoopOpSize = getLoopOperandSizeInBytes(LoopOpType);
152 
153  IRBuilder<> PLBuilder(PreLoopBB->getTerminator());
154 
155  unsigned SrcAS = cast<PointerType>(SrcAddr->getType())->getAddressSpace();
156  unsigned DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
157  PointerType *SrcOpType = PointerType::get(LoopOpType, SrcAS);
158  PointerType *DstOpType = PointerType::get(LoopOpType, DstAS);
159  if (SrcAddr->getType() != SrcOpType) {
160  SrcAddr = PLBuilder.CreateBitCast(SrcAddr, SrcOpType);
161  }
162  if (DstAddr->getType() != DstOpType) {
163  DstAddr = PLBuilder.CreateBitCast(DstAddr, DstOpType);
164  }
165 
166  // Calculate the loop trip count, and remaining bytes to copy after the loop.
167  Type *CopyLenType = CopyLen->getType();
168  IntegerType *ILengthType = dyn_cast<IntegerType>(CopyLenType);
169  assert(ILengthType &&
170  "expected size argument to memcpy to be an integer type!");
171  Type *Int8Type = Type::getInt8Ty(Ctx);
172  bool LoopOpIsInt8 = LoopOpType == Int8Type;
173  ConstantInt *CILoopOpSize = ConstantInt::get(ILengthType, LoopOpSize);
174  Value *RuntimeLoopCount = LoopOpIsInt8 ?
175  CopyLen :
176  PLBuilder.CreateUDiv(CopyLen, CILoopOpSize);
177  BasicBlock *LoopBB =
178  BasicBlock::Create(Ctx, "loop-memcpy-expansion", ParentFunc, PostLoopBB);
179  IRBuilder<> LoopBuilder(LoopBB);
180 
181  PHINode *LoopIndex = LoopBuilder.CreatePHI(CopyLenType, 2, "loop-index");
182  LoopIndex->addIncoming(ConstantInt::get(CopyLenType, 0U), PreLoopBB);
183 
184  Value *SrcGEP = LoopBuilder.CreateInBoundsGEP(LoopOpType, SrcAddr, LoopIndex);
185  Value *Load = LoopBuilder.CreateLoad(SrcGEP, SrcIsVolatile);
186  Value *DstGEP = LoopBuilder.CreateInBoundsGEP(LoopOpType, DstAddr, LoopIndex);
187  LoopBuilder.CreateStore(Load, DstGEP, DstIsVolatile);
188 
189  Value *NewIndex =
190  LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(CopyLenType, 1U));
191  LoopIndex->addIncoming(NewIndex, LoopBB);
192 
193  if (!LoopOpIsInt8) {
194  // Add in the
195  Value *RuntimeResidual = PLBuilder.CreateURem(CopyLen, CILoopOpSize);
196  Value *RuntimeBytesCopied = PLBuilder.CreateSub(CopyLen, RuntimeResidual);
197 
198  // Loop body for the residual copy.
199  BasicBlock *ResLoopBB = BasicBlock::Create(Ctx, "loop-memcpy-residual",
200  PreLoopBB->getParent(),
201  PostLoopBB);
202  // Residual loop header.
203  BasicBlock *ResHeaderBB = BasicBlock::Create(
204  Ctx, "loop-memcpy-residual-header", PreLoopBB->getParent(), nullptr);
205 
206  // Need to update the pre-loop basic block to branch to the correct place.
207  // branch to the main loop if the count is non-zero, branch to the residual
208  // loop if the copy size is smaller then 1 iteration of the main loop but
209  // non-zero and finally branch to after the residual loop if the memcpy
210  // size is zero.
211  ConstantInt *Zero = ConstantInt::get(ILengthType, 0U);
212  PLBuilder.CreateCondBr(PLBuilder.CreateICmpNE(RuntimeLoopCount, Zero),
213  LoopBB, ResHeaderBB);
214  PreLoopBB->getTerminator()->eraseFromParent();
215 
216  LoopBuilder.CreateCondBr(
217  LoopBuilder.CreateICmpULT(NewIndex, RuntimeLoopCount), LoopBB,
218  ResHeaderBB);
219 
220  // Determine if we need to branch to the residual loop or bypass it.
221  IRBuilder<> RHBuilder(ResHeaderBB);
222  RHBuilder.CreateCondBr(RHBuilder.CreateICmpNE(RuntimeResidual, Zero),
223  ResLoopBB, PostLoopBB);
224 
225  // Copy the residual with single byte load/store loop.
226  IRBuilder<> ResBuilder(ResLoopBB);
227  PHINode *ResidualIndex =
228  ResBuilder.CreatePHI(CopyLenType, 2, "residual-loop-index");
229  ResidualIndex->addIncoming(Zero, ResHeaderBB);
230 
231  Value *SrcAsInt8 =
232  ResBuilder.CreateBitCast(SrcAddr, PointerType::get(Int8Type, SrcAS));
233  Value *DstAsInt8 =
234  ResBuilder.CreateBitCast(DstAddr, PointerType::get(Int8Type, DstAS));
235  Value *FullOffset = ResBuilder.CreateAdd(RuntimeBytesCopied, ResidualIndex);
236  Value *SrcGEP =
237  ResBuilder.CreateInBoundsGEP(Int8Type, SrcAsInt8, FullOffset);
238  Value *Load = ResBuilder.CreateLoad(SrcGEP, SrcIsVolatile);
239  Value *DstGEP =
240  ResBuilder.CreateInBoundsGEP(Int8Type, DstAsInt8, FullOffset);
241  ResBuilder.CreateStore(Load, DstGEP, DstIsVolatile);
242 
243  Value *ResNewIndex =
244  ResBuilder.CreateAdd(ResidualIndex, ConstantInt::get(CopyLenType, 1U));
245  ResidualIndex->addIncoming(ResNewIndex, ResLoopBB);
246 
247  // Create the loop branch condition.
248  ResBuilder.CreateCondBr(
249  ResBuilder.CreateICmpULT(ResNewIndex, RuntimeResidual), ResLoopBB,
250  PostLoopBB);
251  } else {
252  // In this case the loop operand type was a byte, and there is no need for a
253  // residual loop to copy the remaining memory after the main loop.
254  // We do however need to patch up the control flow by creating the
255  // terminators for the preloop block and the memcpy loop.
256  ConstantInt *Zero = ConstantInt::get(ILengthType, 0U);
257  PLBuilder.CreateCondBr(PLBuilder.CreateICmpNE(RuntimeLoopCount, Zero),
258  LoopBB, PostLoopBB);
259  PreLoopBB->getTerminator()->eraseFromParent();
260  LoopBuilder.CreateCondBr(
261  LoopBuilder.CreateICmpULT(NewIndex, RuntimeLoopCount), LoopBB,
262  PostLoopBB);
263  }
264 }
265 
266 // Lower memmove to IR. memmove is required to correctly copy overlapping memory
267 // regions; therefore, it has to check the relative positions of the source and
268 // destination pointers and choose the copy direction accordingly.
269 //
270 // The code below is an IR rendition of this C function:
271 //
272 // void* memmove(void* dst, const void* src, size_t n) {
273 // unsigned char* d = dst;
274 // const unsigned char* s = src;
275 // if (s < d) {
276 // // copy backwards
277 // while (n--) {
278 // d[n] = s[n];
279 // }
280 // } else {
281 // // copy forward
282 // for (size_t i = 0; i < n; ++i) {
283 // d[i] = s[i];
284 // }
285 // }
286 // return dst;
287 // }
288 static void createMemMoveLoop(Instruction *InsertBefore,
289  Value *SrcAddr, Value *DstAddr, Value *CopyLen,
290  unsigned SrcAlign, unsigned DestAlign,
291  bool SrcIsVolatile, bool DstIsVolatile) {
292  Type *TypeOfCopyLen = CopyLen->getType();
293  BasicBlock *OrigBB = InsertBefore->getParent();
294  Function *F = OrigBB->getParent();
295 
296  // Create the a comparison of src and dst, based on which we jump to either
297  // the forward-copy part of the function (if src >= dst) or the backwards-copy
298  // part (if src < dst).
299  // SplitBlockAndInsertIfThenElse conveniently creates the basic if-then-else
300  // structure. Its block terminators (unconditional branches) are replaced by
301  // the appropriate conditional branches when the loop is built.
302  ICmpInst *PtrCompare = new ICmpInst(InsertBefore, ICmpInst::ICMP_ULT,
303  SrcAddr, DstAddr, "compare_src_dst");
304  Instruction *ThenTerm, *ElseTerm;
305  SplitBlockAndInsertIfThenElse(PtrCompare, InsertBefore, &ThenTerm,
306  &ElseTerm);
307 
308  // Each part of the function consists of two blocks:
309  // copy_backwards: used to skip the loop when n == 0
310  // copy_backwards_loop: the actual backwards loop BB
311  // copy_forward: used to skip the loop when n == 0
312  // copy_forward_loop: the actual forward loop BB
313  BasicBlock *CopyBackwardsBB = ThenTerm->getParent();
314  CopyBackwardsBB->setName("copy_backwards");
315  BasicBlock *CopyForwardBB = ElseTerm->getParent();
316  CopyForwardBB->setName("copy_forward");
317  BasicBlock *ExitBB = InsertBefore->getParent();
318  ExitBB->setName("memmove_done");
319 
320  // Initial comparison of n == 0 that lets us skip the loops altogether. Shared
321  // between both backwards and forward copy clauses.
322  ICmpInst *CompareN =
323  new ICmpInst(OrigBB->getTerminator(), ICmpInst::ICMP_EQ, CopyLen,
324  ConstantInt::get(TypeOfCopyLen, 0), "compare_n_to_0");
325 
326  // Copying backwards.
327  BasicBlock *LoopBB =
328  BasicBlock::Create(F->getContext(), "copy_backwards_loop", F, CopyForwardBB);
329  IRBuilder<> LoopBuilder(LoopBB);
330  PHINode *LoopPhi = LoopBuilder.CreatePHI(TypeOfCopyLen, 0);
331  Value *IndexPtr = LoopBuilder.CreateSub(
332  LoopPhi, ConstantInt::get(TypeOfCopyLen, 1), "index_ptr");
333  Value *Element = LoopBuilder.CreateLoad(
334  LoopBuilder.CreateInBoundsGEP(SrcAddr, IndexPtr), "element");
335  LoopBuilder.CreateStore(Element,
336  LoopBuilder.CreateInBoundsGEP(DstAddr, IndexPtr));
337  LoopBuilder.CreateCondBr(
338  LoopBuilder.CreateICmpEQ(IndexPtr, ConstantInt::get(TypeOfCopyLen, 0)),
339  ExitBB, LoopBB);
340  LoopPhi->addIncoming(IndexPtr, LoopBB);
341  LoopPhi->addIncoming(CopyLen, CopyBackwardsBB);
342  BranchInst::Create(ExitBB, LoopBB, CompareN, ThenTerm);
343  ThenTerm->eraseFromParent();
344 
345  // Copying forward.
346  BasicBlock *FwdLoopBB =
347  BasicBlock::Create(F->getContext(), "copy_forward_loop", F, ExitBB);
348  IRBuilder<> FwdLoopBuilder(FwdLoopBB);
349  PHINode *FwdCopyPhi = FwdLoopBuilder.CreatePHI(TypeOfCopyLen, 0, "index_ptr");
350  Value *FwdElement = FwdLoopBuilder.CreateLoad(
351  FwdLoopBuilder.CreateInBoundsGEP(SrcAddr, FwdCopyPhi), "element");
352  FwdLoopBuilder.CreateStore(
353  FwdElement, FwdLoopBuilder.CreateInBoundsGEP(DstAddr, FwdCopyPhi));
354  Value *FwdIndexPtr = FwdLoopBuilder.CreateAdd(
355  FwdCopyPhi, ConstantInt::get(TypeOfCopyLen, 1), "index_increment");
356  FwdLoopBuilder.CreateCondBr(FwdLoopBuilder.CreateICmpEQ(FwdIndexPtr, CopyLen),
357  ExitBB, FwdLoopBB);
358  FwdCopyPhi->addIncoming(FwdIndexPtr, FwdLoopBB);
359  FwdCopyPhi->addIncoming(ConstantInt::get(TypeOfCopyLen, 0), CopyForwardBB);
360 
361  BranchInst::Create(ExitBB, FwdLoopBB, CompareN, ElseTerm);
362  ElseTerm->eraseFromParent();
363 }
364 
365 static void createMemSetLoop(Instruction *InsertBefore,
366  Value *DstAddr, Value *CopyLen, Value *SetValue,
367  unsigned Align, bool IsVolatile) {
368  Type *TypeOfCopyLen = CopyLen->getType();
369  BasicBlock *OrigBB = InsertBefore->getParent();
370  Function *F = OrigBB->getParent();
371  BasicBlock *NewBB =
372  OrigBB->splitBasicBlock(InsertBefore, "split");
373  BasicBlock *LoopBB
374  = BasicBlock::Create(F->getContext(), "loadstoreloop", F, NewBB);
375 
376  IRBuilder<> Builder(OrigBB->getTerminator());
377 
378  // Cast pointer to the type of value getting stored
379  unsigned dstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
380  DstAddr = Builder.CreateBitCast(DstAddr,
381  PointerType::get(SetValue->getType(), dstAS));
382 
383  Builder.CreateCondBr(
384  Builder.CreateICmpEQ(ConstantInt::get(TypeOfCopyLen, 0), CopyLen), NewBB,
385  LoopBB);
386  OrigBB->getTerminator()->eraseFromParent();
387 
388  IRBuilder<> LoopBuilder(LoopBB);
389  PHINode *LoopIndex = LoopBuilder.CreatePHI(TypeOfCopyLen, 0);
390  LoopIndex->addIncoming(ConstantInt::get(TypeOfCopyLen, 0), OrigBB);
391 
392  LoopBuilder.CreateStore(
393  SetValue,
394  LoopBuilder.CreateInBoundsGEP(SetValue->getType(), DstAddr, LoopIndex),
395  IsVolatile);
396 
397  Value *NewIndex =
398  LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(TypeOfCopyLen, 1));
399  LoopIndex->addIncoming(NewIndex, LoopBB);
400 
401  LoopBuilder.CreateCondBr(LoopBuilder.CreateICmpULT(NewIndex, CopyLen), LoopBB,
402  NewBB);
403 }
404 
406  const TargetTransformInfo &TTI) {
407  if (ConstantInt *CI = dyn_cast<ConstantInt>(Memcpy->getLength())) {
408  createMemCpyLoopKnownSize(/* InsertBefore */ Memcpy,
409  /* SrcAddr */ Memcpy->getRawSource(),
410  /* DstAddr */ Memcpy->getRawDest(),
411  /* CopyLen */ CI,
412  /* SrcAlign */ Memcpy->getSourceAlignment(),
413  /* DestAlign */ Memcpy->getDestAlignment(),
414  /* SrcIsVolatile */ Memcpy->isVolatile(),
415  /* DstIsVolatile */ Memcpy->isVolatile(),
416  /* TargetTransformInfo */ TTI);
417  } else {
418  createMemCpyLoopUnknownSize(/* InsertBefore */ Memcpy,
419  /* SrcAddr */ Memcpy->getRawSource(),
420  /* DstAddr */ Memcpy->getRawDest(),
421  /* CopyLen */ Memcpy->getLength(),
422  /* SrcAlign */ Memcpy->getSourceAlignment(),
423  /* DestAlign */ Memcpy->getDestAlignment(),
424  /* SrcIsVolatile */ Memcpy->isVolatile(),
425  /* DstIsVolatile */ Memcpy->isVolatile(),
426  /* TargetTransfomrInfo */ TTI);
427  }
428 }
429 
431  createMemMoveLoop(/* InsertBefore */ Memmove,
432  /* SrcAddr */ Memmove->getRawSource(),
433  /* DstAddr */ Memmove->getRawDest(),
434  /* CopyLen */ Memmove->getLength(),
435  /* SrcAlign */ Memmove->getSourceAlignment(),
436  /* DestAlign */ Memmove->getDestAlignment(),
437  /* SrcIsVolatile */ Memmove->isVolatile(),
438  /* DstIsVolatile */ Memmove->isVolatile());
439 }
440 
442  createMemSetLoop(/* InsertBefore */ Memset,
443  /* DstAddr */ Memset->getRawDest(),
444  /* CopyLen */ Memset->getLength(),
445  /* SetValue */ Memset->getValue(),
446  /* Alignment */ Memset->getDestAlignment(),
447  Memset->isVolatile());
448 }
static unsigned getLoopOperandSizeInBytes(Type *Type)
Value * CreateInBoundsGEP(Value *Ptr, ArrayRef< Value *> IdxList, const Twine &Name="")
Definition: IRBuilder.h:1477
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks &#39;this&#39; from the containing basic block and deletes it.
Definition: Instruction.cpp:68
IntegerType * getType() const
getType - Specialize the getType() method to always return an IntegerType, which reduces the amount o...
Definition: Constants.h:172
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional &#39;br Cond, TrueDest, FalseDest&#39; instruction.
Definition: IRBuilder.h:854
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1843
This class represents lattice values for constants.
Definition: AllocatorList.h:24
Value * CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1855
void expandMemMoveAsLoop(MemMoveInst *MemMove)
Expand MemMove as a loop. MemMove is not deleted.
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve &#39;CreateLoad(Ty, Ptr, "...")&#39; correctly, instead of converting the string to &#39;bool...
Definition: IRBuilder.h:1357
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF)
Definition: Execution.cpp:42
constexpr char IsVolatile[]
Key for Kernel::Arg::Metadata::mIsVolatile.
unsigned getSourceAlignment() const
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space...
Definition: Type.cpp:630
unsigned less than
Definition: InstrTypes.h:671
Value * getValue() const
Type * getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAlign, unsigned DestAlign) const
This class wraps the llvm.memset intrinsic.
F(f)
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:138
void setSuccessor(unsigned Idx, BasicBlock *BB)
Update the specified successor to point at the provided block.
Value * getLength() const
void expandMemSetAsLoop(MemSetInst *MemSet)
Expand MemSet as a loop. MemSet is not deleted.
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:33
This class wraps the llvm.memmove intrinsic.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:743
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1014
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:285
unsigned getDestAlignment() const
StoreInst * CreateStore(Value *Val, Value *Ptr, bool isVolatile=false)
Definition: IRBuilder.h:1386
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1732
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
Class to represent pointers.
Definition: DerivedTypes.h:467
const Instruction * getFirstNonPHI() const
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
Definition: BasicBlock.cpp:190
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:149
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:69
This is an important base class in LLVM.
Definition: Constant.h:42
This instruction compares its operands according to the predicate given to the constructor.
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:100
Class to represent integer types.
Definition: DerivedTypes.h:40
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function. ...
Definition: Function.cpp:193
bool isVolatile() const
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
Definition: IRBuilder.h:1969
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
This class wraps the llvm.memcpy intrinsic.
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:622
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=nullptr)
Value * getRawSource() const
Return the arguments to the instruction.
Class to represent vector types.
Definition: DerivedTypes.h:393
static void createMemSetLoop(Instruction *InsertBefore, Value *DstAddr, Value *CopyLen, Value *SetValue, unsigned Align, bool IsVolatile)
void SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, Instruction **ThenTerm, Instruction **ElseTerm, MDNode *BranchWeights=nullptr)
SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen, but also creates the ElseBlock...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:107
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition: Constants.h:193
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="")
Split the basic block into two basic blocks at the specified instruction.
Definition: BasicBlock.cpp:408
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
void createMemCpyLoopKnownSize(Instruction *InsertBefore, Value *SrcAddr, Value *DstAddr, ConstantInt *CopyLen, unsigned SrcAlign, unsigned DestAlign, bool SrcIsVolatile, bool DstIsVolatile, const TargetTransformInfo &TTI)
Emit a loop implementing the semantics of an llvm.memcpy whose size is a compile time constant...
unsigned getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition: Type.cpp:115
LLVM Value Representation.
Definition: Value.h:73
void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type *> &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const
static void createMemMoveLoop(Instruction *InsertBefore, Value *SrcAddr, Value *DstAddr, Value *CopyLen, unsigned SrcAlign, unsigned DestAlign, bool SrcIsVolatile, bool DstIsVolatile)
This pass exposes codegen information to IR-level passes.
void createMemCpyLoopUnknownSize(Instruction *InsertBefore, Value *SrcAddr, Value *DstAddr, Value *CopyLen, unsigned SrcAlign, unsigned DestAlign, bool SrcIsVolatile, bool DstIsVolatile, const TargetTransformInfo &TTI)
Emit a loop implementing the semantics of llvm.memcpy where the size is not a compile-time constant...
static IntegerType * getInt8Ty(LLVMContext &C)
Definition: Type.cpp:174
Value * getRawDest() const
void expandMemCpyAsLoop(MemCpyInst *MemCpy, const TargetTransformInfo &TTI)
Expand MemCpy as a loop. MemCpy is not deleted.
const BasicBlock * getParent() const
Definition: Instruction.h:67