LLVM  8.0.1
FunctionExtras.h
Go to the documentation of this file.
1 //===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file provides a collection of function (or more generally, callable)
11 /// type erasure utilities supplementing those provided by the standard library
12 /// in `<function>`.
13 ///
14 /// It provides `unique_function`, which works like `std::function` but supports
15 /// move-only callable objects.
16 ///
17 /// Future plans:
18 /// - Add a `function` that provides const, volatile, and ref-qualified support,
19 /// which doesn't work with `std::function`.
20 /// - Provide support for specifying multiple signatures to type erase callable
21 /// objects with an overload set, such as those produced by generic lambdas.
22 /// - Expand to include a copyable utility that directly replaces std::function
23 /// but brings the above improvements.
24 ///
25 /// Note that LLVM's utilities are greatly simplified by not supporting
26 /// allocators.
27 ///
28 /// If the standard library ever begins to provide comparable facilities we can
29 /// consider switching to those.
30 ///
31 //===----------------------------------------------------------------------===//
32 
33 #ifndef LLVM_ADT_FUNCTION_EXTRAS_H
34 #define LLVM_ADT_FUNCTION_EXTRAS_H
35 
37 #include "llvm/ADT/PointerUnion.h"
39 #include <memory>
40 
41 namespace llvm {
42 
43 template <typename FunctionT> class unique_function;
44 
45 template <typename ReturnT, typename... ParamTs>
46 class unique_function<ReturnT(ParamTs...)> {
47  static constexpr size_t InlineStorageSize = sizeof(void *) * 3;
48 
49  // MSVC has a bug and ICEs if we give it a particular dependent value
50  // expression as part of the `std::conditional` below. To work around this,
51  // we build that into a template struct's constexpr bool.
52  template <typename T> struct IsSizeLessThanThresholdT {
53  static constexpr bool value = sizeof(T) <= (2 * sizeof(void *));
54  };
55 
56  // Provide a type function to map parameters that won't observe extra copies
57  // or moves and which are small enough to likely pass in register to values
58  // and all other types to l-value reference types. We use this to compute the
59  // types used in our erased call utility to minimize copies and moves unless
60  // doing so would force things unnecessarily into memory.
61  //
62  // The heuristic used is related to common ABI register passing conventions.
63  // It doesn't have to be exact though, and in one way it is more strict
64  // because we want to still be able to observe either moves *or* copies.
65  template <typename T>
66  using AdjustedParamT = typename std::conditional<
67  !std::is_reference<T>::value &&
70  IsSizeLessThanThresholdT<T>::value,
71  T, T &>::type;
72 
73  // The type of the erased function pointer we use as a callback to dispatch to
74  // the stored callable when it is trivial to move and destroy.
75  using CallPtrT = ReturnT (*)(void *CallableAddr,
76  AdjustedParamT<ParamTs>... Params);
77  using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr);
78  using DestroyPtrT = void (*)(void *CallableAddr);
79 
80  /// A struct to hold a single trivial callback with sufficient alignment for
81  /// our bitpacking.
82  struct alignas(8) TrivialCallback {
83  CallPtrT CallPtr;
84  };
85 
86  /// A struct we use to aggregate three callbacks when we need full set of
87  /// operations.
88  struct alignas(8) NonTrivialCallbacks {
89  CallPtrT CallPtr;
90  MovePtrT MovePtr;
91  DestroyPtrT DestroyPtr;
92  };
93 
94  // Create a pointer union between either a pointer to a static trivial call
95  // pointer in a struct or a pointer to a static struct of the call, move, and
96  // destroy pointers.
97  using CallbackPointerUnionT =
99 
100  // The main storage buffer. This will either have a pointer to out-of-line
101  // storage or an inline buffer storing the callable.
102  union StorageUnionT {
103  // For out-of-line storage we keep a pointer to the underlying storage and
104  // the size. This is enough to deallocate the memory.
105  struct OutOfLineStorageT {
106  void *StoragePtr;
107  size_t Size;
108  size_t Alignment;
109  } OutOfLineStorage;
110  static_assert(
111  sizeof(OutOfLineStorageT) <= InlineStorageSize,
112  "Should always use all of the out-of-line storage for inline storage!");
113 
114  // For in-line storage, we just provide an aligned character buffer. We
115  // provide three pointers worth of storage here.
116  typename std::aligned_storage<InlineStorageSize, alignof(void *)>::type
117  InlineStorage;
118  } StorageUnion;
119 
120  // A compressed pointer to either our dispatching callback or our table of
121  // dispatching callbacks and the flag for whether the callable itself is
122  // stored inline or not.
124 
125  bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); }
126 
127  bool isTrivialCallback() const {
128  return CallbackAndInlineFlag.getPointer().template is<TrivialCallback *>();
129  }
130 
131  CallPtrT getTrivialCallback() const {
132  return CallbackAndInlineFlag.getPointer().template get<TrivialCallback *>()->CallPtr;
133  }
134 
135  NonTrivialCallbacks *getNonTrivialCallbacks() const {
136  return CallbackAndInlineFlag.getPointer()
137  .template get<NonTrivialCallbacks *>();
138  }
139 
140  void *getInlineStorage() { return &StorageUnion.InlineStorage; }
141 
142  void *getOutOfLineStorage() {
143  return StorageUnion.OutOfLineStorage.StoragePtr;
144  }
145  size_t getOutOfLineStorageSize() const {
146  return StorageUnion.OutOfLineStorage.Size;
147  }
148  size_t getOutOfLineStorageAlignment() const {
149  return StorageUnion.OutOfLineStorage.Alignment;
150  }
151 
152  void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) {
153  StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment};
154  }
155 
156  template <typename CallableT>
157  static ReturnT CallImpl(void *CallableAddr, AdjustedParamT<ParamTs>... Params) {
158  return (*reinterpret_cast<CallableT *>(CallableAddr))(
159  std::forward<ParamTs>(Params)...);
160  }
161 
162  template <typename CallableT>
163  static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept {
164  new (LHSCallableAddr)
165  CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr)));
166  }
167 
168  template <typename CallableT>
169  static void DestroyImpl(void *CallableAddr) noexcept {
170  reinterpret_cast<CallableT *>(CallableAddr)->~CallableT();
171  }
172 
173 public:
174  unique_function() = default;
175  unique_function(std::nullptr_t /*null_callable*/) {}
176 
178  if (!CallbackAndInlineFlag.getPointer())
179  return;
180 
181  // Cache this value so we don't re-check it after type-erased operations.
182  bool IsInlineStorage = isInlineStorage();
183 
184  if (!isTrivialCallback())
185  getNonTrivialCallbacks()->DestroyPtr(
186  IsInlineStorage ? getInlineStorage() : getOutOfLineStorage());
187 
188  if (!IsInlineStorage)
189  deallocate_buffer(getOutOfLineStorage(), getOutOfLineStorageSize(),
190  getOutOfLineStorageAlignment());
191  }
192 
194  // Copy the callback and inline flag.
195  CallbackAndInlineFlag = RHS.CallbackAndInlineFlag;
196 
197  // If the RHS is empty, just copying the above is sufficient.
198  if (!RHS)
199  return;
200 
201  if (!isInlineStorage()) {
202  // The out-of-line case is easiest to move.
203  StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage;
204  } else if (isTrivialCallback()) {
205  // Move is trivial, just memcpy the bytes across.
206  memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize);
207  } else {
208  // Non-trivial move, so dispatch to a type-erased implementation.
209  getNonTrivialCallbacks()->MovePtr(getInlineStorage(),
210  RHS.getInlineStorage());
211  }
212 
213  // Clear the old callback and inline flag to get back to as-if-null.
214  RHS.CallbackAndInlineFlag = {};
215 
216 #ifndef NDEBUG
217  // In debug builds, we also scribble across the rest of the storage.
218  memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize);
219 #endif
220  }
221 
223  if (this == &RHS)
224  return *this;
225 
226  // Because we don't try to provide any exception safety guarantees we can
227  // implement move assignment very simply by first destroying the current
228  // object and then move-constructing over top of it.
229  this->~unique_function();
230  new (this) unique_function(std::move(RHS));
231  return *this;
232  }
233 
234  template <typename CallableT> unique_function(CallableT Callable) {
235  bool IsInlineStorage = true;
236  void *CallableAddr = getInlineStorage();
237  if (sizeof(CallableT) > InlineStorageSize ||
238  alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) {
239  IsInlineStorage = false;
240  // Allocate out-of-line storage. FIXME: Use an explicit alignment
241  // parameter in C++17 mode.
242  auto Size = sizeof(CallableT);
243  auto Alignment = alignof(CallableT);
244  CallableAddr = allocate_buffer(Size, Alignment);
245  setOutOfLineStorage(CallableAddr, Size, Alignment);
246  }
247 
248  // Now move into the storage.
249  new (CallableAddr) CallableT(std::move(Callable));
250 
251  // See if we can create a trivial callback. We need the callable to be
252  // trivially moved and trivially destroyed so that we don't have to store
253  // type erased callbacks for those operations.
254  //
255  // FIXME: We should use constexpr if here and below to avoid instantiating
256  // the non-trivial static objects when unnecessary. While the linker should
257  // remove them, it is still wasteful.
259  std::is_trivially_destructible<CallableT>::value) {
260  // We need to create a nicely aligned object. We use a static variable
261  // for this because it is a trivial struct.
262  static TrivialCallback Callback = { &CallImpl<CallableT> };
263 
264  CallbackAndInlineFlag = {&Callback, IsInlineStorage};
265  return;
266  }
267 
268  // Otherwise, we need to point at an object that contains all the different
269  // type erased behaviors needed. Create a static instance of the struct type
270  // here and then use a pointer to that.
271  static NonTrivialCallbacks Callbacks = {
272  &CallImpl<CallableT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>};
273 
274  CallbackAndInlineFlag = {&Callbacks, IsInlineStorage};
275  }
276 
277  ReturnT operator()(ParamTs... Params) {
278  void *CallableAddr =
279  isInlineStorage() ? getInlineStorage() : getOutOfLineStorage();
280 
281  return (isTrivialCallback()
282  ? getTrivialCallback()
283  : getNonTrivialCallbacks()->CallPtr)(CallableAddr, Params...);
284  }
285 
286  explicit operator bool() const {
287  return (bool)CallbackAndInlineFlag.getPointer();
288  }
289 };
290 
291 } // end namespace llvm
292 
293 #endif // LLVM_ADT_FUNCTION_H
This class represents lattice values for constants.
Definition: AllocatorList.h:24
PointerTy getPointer() const
unique_function & operator=(unique_function &&RHS) noexcept
unique_function(unique_function &&RHS) noexcept
IntType getInt() const
#define T
An implementation of std::is_trivially_move_constructible since we have users with STLs that don&#39;t ye...
Definition: type_traits.h:139
void * allocate_buffer(size_t Size, size_t Alignment)
Allocate a buffer of memory with the given size and alignment.
Definition: Compiler.h:533
PointerIntPair - This class implements a pair of a pointer and small integer.
An implementation of std::is_trivially_copy_constructible since we have users with STLs that don&#39;t ye...
Definition: type_traits.h:128
void deallocate_buffer(void *Ptr, size_t Size, size_t Alignment)
Deallocate a buffer of memory with the given size and alignment.
Definition: Compiler.h:549
uint32_t Size
Definition: Profile.cpp:47
A discriminated union of two pointer types, with the discriminator in the low bit of the pointer...
Definition: PointerUnion.h:87