LLVM  8.0.1
ExecutionEngine.h
Go to the documentation of this file.
1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the abstract interface that implements execution support
11 // for LLVM.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
16 #define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
17 
18 #include "llvm-c/ExecutionEngine.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Object/Binary.h"
29 #include "llvm/Support/CodeGen.h"
31 #include "llvm/Support/Mutex.h"
34 #include <algorithm>
35 #include <cstdint>
36 #include <functional>
37 #include <map>
38 #include <memory>
39 #include <string>
40 #include <vector>
41 
42 namespace llvm {
43 
44 class Constant;
45 class Function;
46 struct GenericValue;
47 class GlobalValue;
48 class GlobalVariable;
49 class JITEventListener;
50 class MCJITMemoryManager;
51 class ObjectCache;
52 class RTDyldMemoryManager;
53 class Triple;
54 class Type;
55 
56 namespace object {
57 
58 class Archive;
59 class ObjectFile;
60 
61 } // end namespace object
62 
63 /// Helper class for helping synchronize access to the global address map
64 /// table. Access to this class should be serialized under a mutex.
66 public:
68 
69 private:
70  /// GlobalAddressMap - A mapping between LLVM global symbol names values and
71  /// their actualized version...
72  GlobalAddressMapTy GlobalAddressMap;
73 
74  /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
75  /// used to convert raw addresses into the LLVM global value that is emitted
76  /// at the address. This map is not computed unless getGlobalValueAtAddress
77  /// is called at some point.
78  std::map<uint64_t, std::string> GlobalAddressReverseMap;
79 
80 public:
82  return GlobalAddressMap;
83  }
84 
85  std::map<uint64_t, std::string> &getGlobalAddressReverseMap() {
86  return GlobalAddressReverseMap;
87  }
88 
89  /// Erase an entry from the mapping table.
90  ///
91  /// \returns The address that \p ToUnmap was happed to.
92  uint64_t RemoveMapping(StringRef Name);
93 };
94 
95 using FunctionCreator = std::function<void *(const std::string &)>;
96 
97 /// Abstract interface for implementation execution of LLVM modules,
98 /// designed to support both interpreter and just-in-time (JIT) compiler
99 /// implementations.
101  /// The state object holding the global address mapping, which must be
102  /// accessed synchronously.
103  //
104  // FIXME: There is no particular need the entire map needs to be
105  // synchronized. Wouldn't a reader-writer design be better here?
106  ExecutionEngineState EEState;
107 
108  /// The target data for the platform for which execution is being performed.
109  ///
110  /// Note: the DataLayout is LLVMContext specific because it has an
111  /// internal cache based on type pointers. It makes unsafe to reuse the
112  /// ExecutionEngine across context, we don't enforce this rule but undefined
113  /// behavior can occurs if the user tries to do it.
114  const DataLayout DL;
115 
116  /// Whether lazy JIT compilation is enabled.
117  bool CompilingLazily;
118 
119  /// Whether JIT compilation of external global variables is allowed.
120  bool GVCompilationDisabled;
121 
122  /// Whether the JIT should perform lookups of external symbols (e.g.,
123  /// using dlsym).
124  bool SymbolSearchingDisabled;
125 
126  /// Whether the JIT should verify IR modules during compilation.
127  bool VerifyModules;
128 
129  friend class EngineBuilder; // To allow access to JITCtor and InterpCtor.
130 
131 protected:
132  /// The list of Modules that we are JIT'ing from. We use a SmallVector to
133  /// optimize for the case where there is only one module.
135 
136  /// getMemoryforGV - Allocate memory for a global variable.
137  virtual char *getMemoryForGV(const GlobalVariable *GV);
138 
139  static ExecutionEngine *(*MCJITCtor)(
140  std::unique_ptr<Module> M, std::string *ErrorStr,
141  std::shared_ptr<MCJITMemoryManager> MM,
142  std::shared_ptr<LegacyJITSymbolResolver> SR,
143  std::unique_ptr<TargetMachine> TM);
144 
145  static ExecutionEngine *(*OrcMCJITReplacementCtor)(
146  std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MM,
147  std::shared_ptr<LegacyJITSymbolResolver> SR,
148  std::unique_ptr<TargetMachine> TM);
149 
150  static ExecutionEngine *(*InterpCtor)(std::unique_ptr<Module> M,
151  std::string *ErrorStr);
152 
153  /// LazyFunctionCreator - If an unknown function is needed, this function
154  /// pointer is invoked to create it. If this returns null, the JIT will
155  /// abort.
157 
158  /// getMangledName - Get mangled name.
159  std::string getMangledName(const GlobalValue *GV);
160 
161 public:
162  /// lock - This lock protects the ExecutionEngine and MCJIT classes. It must
163  /// be held while changing the internal state of any of those classes.
165 
166  //===--------------------------------------------------------------------===//
167  // ExecutionEngine Startup
168  //===--------------------------------------------------------------------===//
169 
170  virtual ~ExecutionEngine();
171 
172  /// Add a Module to the list of modules that we can JIT from.
173  virtual void addModule(std::unique_ptr<Module> M) {
174  Modules.push_back(std::move(M));
175  }
176 
177  /// addObjectFile - Add an ObjectFile to the execution engine.
178  ///
179  /// This method is only supported by MCJIT. MCJIT will immediately load the
180  /// object into memory and adds its symbols to the list used to resolve
181  /// external symbols while preparing other objects for execution.
182  ///
183  /// Objects added using this function will not be made executable until
184  /// needed by another object.
185  ///
186  /// MCJIT will take ownership of the ObjectFile.
187  virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O);
188  virtual void addObjectFile(object::OwningBinary<object::ObjectFile> O);
189 
190  /// addArchive - Add an Archive to the execution engine.
191  ///
192  /// This method is only supported by MCJIT. MCJIT will use the archive to
193  /// resolve external symbols in objects it is loading. If a symbol is found
194  /// in the Archive the contained object file will be extracted (in memory)
195  /// and loaded for possible execution.
196  virtual void addArchive(object::OwningBinary<object::Archive> A);
197 
198  //===--------------------------------------------------------------------===//
199 
200  const DataLayout &getDataLayout() const { return DL; }
201 
202  /// removeModule - Removes a Module from the list of modules, but does not
203  /// free the module's memory. Returns true if M is found, in which case the
204  /// caller assumes responsibility for deleting the module.
205  //
206  // FIXME: This stealth ownership transfer is horrible. This will probably be
207  // fixed by deleting ExecutionEngine.
208  virtual bool removeModule(Module *M);
209 
210  /// FindFunctionNamed - Search all of the active modules to find the function that
211  /// defines FnName. This is very slow operation and shouldn't be used for
212  /// general code.
213  virtual Function *FindFunctionNamed(StringRef FnName);
214 
215  /// FindGlobalVariableNamed - Search all of the active modules to find the global variable
216  /// that defines Name. This is very slow operation and shouldn't be used for
217  /// general code.
218  virtual GlobalVariable *FindGlobalVariableNamed(StringRef Name, bool AllowInternal = false);
219 
220  /// runFunction - Execute the specified function with the specified arguments,
221  /// and return the result.
222  ///
223  /// For MCJIT execution engines, clients are encouraged to use the
224  /// "GetFunctionAddress" method (rather than runFunction) and cast the
225  /// returned uint64_t to the desired function pointer type. However, for
226  /// backwards compatibility MCJIT's implementation can execute 'main-like'
227  /// function (i.e. those returning void or int, and taking either no
228  /// arguments or (int, char*[])).
229  virtual GenericValue runFunction(Function *F,
230  ArrayRef<GenericValue> ArgValues) = 0;
231 
232  /// getPointerToNamedFunction - This method returns the address of the
233  /// specified function by using the dlsym function call. As such it is only
234  /// useful for resolving library symbols, not code generated symbols.
235  ///
236  /// If AbortOnFailure is false and no function with the given name is
237  /// found, this function silently returns a null pointer. Otherwise,
238  /// it prints a message to stderr and aborts.
239  ///
240  /// This function is deprecated for the MCJIT execution engine.
241  virtual void *getPointerToNamedFunction(StringRef Name,
242  bool AbortOnFailure = true) = 0;
243 
244  /// mapSectionAddress - map a section to its target address space value.
245  /// Map the address of a JIT section as returned from the memory manager
246  /// to the address in the target process as the running code will see it.
247  /// This is the address which will be used for relocation resolution.
248  virtual void mapSectionAddress(const void *LocalAddress,
249  uint64_t TargetAddress) {
250  llvm_unreachable("Re-mapping of section addresses not supported with this "
251  "EE!");
252  }
253 
254  /// generateCodeForModule - Run code generation for the specified module and
255  /// load it into memory.
256  ///
257  /// When this function has completed, all code and data for the specified
258  /// module, and any module on which this module depends, will be generated
259  /// and loaded into memory, but relocations will not yet have been applied
260  /// and all memory will be readable and writable but not executable.
261  ///
262  /// This function is primarily useful when generating code for an external
263  /// target, allowing the client an opportunity to remap section addresses
264  /// before relocations are applied. Clients that intend to execute code
265  /// locally can use the getFunctionAddress call, which will generate code
266  /// and apply final preparations all in one step.
267  ///
268  /// This method has no effect for the interpeter.
269  virtual void generateCodeForModule(Module *M) {}
270 
271  /// finalizeObject - ensure the module is fully processed and is usable.
272  ///
273  /// It is the user-level function for completing the process of making the
274  /// object usable for execution. It should be called after sections within an
275  /// object have been relocated using mapSectionAddress. When this method is
276  /// called the MCJIT execution engine will reapply relocations for a loaded
277  /// object. This method has no effect for the interpeter.
278  virtual void finalizeObject() {}
279 
280  /// runStaticConstructorsDestructors - This method is used to execute all of
281  /// the static constructors or destructors for a program.
282  ///
283  /// \param isDtors - Run the destructors instead of constructors.
284  virtual void runStaticConstructorsDestructors(bool isDtors);
285 
286  /// This method is used to execute all of the static constructors or
287  /// destructors for a particular module.
288  ///
289  /// \param isDtors - Run the destructors instead of constructors.
290  void runStaticConstructorsDestructors(Module &module, bool isDtors);
291 
292 
293  /// runFunctionAsMain - This is a helper function which wraps runFunction to
294  /// handle the common task of starting up main with the specified argc, argv,
295  /// and envp parameters.
296  int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
297  const char * const * envp);
298 
299 
300  /// addGlobalMapping - Tell the execution engine that the specified global is
301  /// at the specified location. This is used internally as functions are JIT'd
302  /// and as global variables are laid out in memory. It can and should also be
303  /// used by clients of the EE that want to have an LLVM global overlay
304  /// existing data in memory. Values to be mapped should be named, and have
305  /// external or weak linkage. Mappings are automatically removed when their
306  /// GlobalValue is destroyed.
307  void addGlobalMapping(const GlobalValue *GV, void *Addr);
308  void addGlobalMapping(StringRef Name, uint64_t Addr);
309 
310  /// clearAllGlobalMappings - Clear all global mappings and start over again,
311  /// for use in dynamic compilation scenarios to move globals.
312  void clearAllGlobalMappings();
313 
314  /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
315  /// particular module, because it has been removed from the JIT.
316  void clearGlobalMappingsFromModule(Module *M);
317 
318  /// updateGlobalMapping - Replace an existing mapping for GV with a new
319  /// address. This updates both maps as required. If "Addr" is null, the
320  /// entry for the global is removed from the mappings. This returns the old
321  /// value of the pointer, or null if it was not in the map.
322  uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr);
323  uint64_t updateGlobalMapping(StringRef Name, uint64_t Addr);
324 
325  /// getAddressToGlobalIfAvailable - This returns the address of the specified
326  /// global symbol.
327  uint64_t getAddressToGlobalIfAvailable(StringRef S);
328 
329  /// getPointerToGlobalIfAvailable - This returns the address of the specified
330  /// global value if it is has already been codegen'd, otherwise it returns
331  /// null.
332  void *getPointerToGlobalIfAvailable(StringRef S);
333  void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
334 
335  /// getPointerToGlobal - This returns the address of the specified global
336  /// value. This may involve code generation if it's a function.
337  ///
338  /// This function is deprecated for the MCJIT execution engine. Use
339  /// getGlobalValueAddress instead.
340  void *getPointerToGlobal(const GlobalValue *GV);
341 
342  /// getPointerToFunction - The different EE's represent function bodies in
343  /// different ways. They should each implement this to say what a function
344  /// pointer should look like. When F is destroyed, the ExecutionEngine will
345  /// remove its global mapping and free any machine code. Be sure no threads
346  /// are running inside F when that happens.
347  ///
348  /// This function is deprecated for the MCJIT execution engine. Use
349  /// getFunctionAddress instead.
350  virtual void *getPointerToFunction(Function *F) = 0;
351 
352  /// getPointerToFunctionOrStub - If the specified function has been
353  /// code-gen'd, return a pointer to the function. If not, compile it, or use
354  /// a stub to implement lazy compilation if available. See
355  /// getPointerToFunction for the requirements on destroying F.
356  ///
357  /// This function is deprecated for the MCJIT execution engine. Use
358  /// getFunctionAddress instead.
360  // Default implementation, just codegen the function.
361  return getPointerToFunction(F);
362  }
363 
364  /// getGlobalValueAddress - Return the address of the specified global
365  /// value. This may involve code generation.
366  ///
367  /// This function should not be called with the interpreter engine.
368  virtual uint64_t getGlobalValueAddress(const std::string &Name) {
369  // Default implementation for the interpreter. MCJIT will override this.
370  // JIT and interpreter clients should use getPointerToGlobal instead.
371  return 0;
372  }
373 
374  /// getFunctionAddress - Return the address of the specified function.
375  /// This may involve code generation.
376  virtual uint64_t getFunctionAddress(const std::string &Name) {
377  // Default implementation for the interpreter. MCJIT will override this.
378  // Interpreter clients should use getPointerToFunction instead.
379  return 0;
380  }
381 
382  /// getGlobalValueAtAddress - Return the LLVM global value object that starts
383  /// at the specified address.
384  ///
385  const GlobalValue *getGlobalValueAtAddress(void *Addr);
386 
387  /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
388  /// Ptr is the address of the memory at which to store Val, cast to
389  /// GenericValue *. It is not a pointer to a GenericValue containing the
390  /// address at which to store Val.
391  void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
392  Type *Ty);
393 
394  void InitializeMemory(const Constant *Init, void *Addr);
395 
396  /// getOrEmitGlobalVariable - Return the address of the specified global
397  /// variable, possibly emitting it to memory if needed. This is used by the
398  /// Emitter.
399  ///
400  /// This function is deprecated for the MCJIT execution engine. Use
401  /// getGlobalValueAddress instead.
402  virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
403  return getPointerToGlobal((const GlobalValue *)GV);
404  }
405 
406  /// Registers a listener to be called back on various events within
407  /// the JIT. See JITEventListener.h for more details. Does not
408  /// take ownership of the argument. The argument may be NULL, in
409  /// which case these functions do nothing.
412 
413  /// Sets the pre-compiled object cache. The ownership of the ObjectCache is
414  /// not changed. Supported by MCJIT but not the interpreter.
415  virtual void setObjectCache(ObjectCache *) {
416  llvm_unreachable("No support for an object cache");
417  }
418 
419  /// setProcessAllSections (MCJIT Only): By default, only sections that are
420  /// "required for execution" are passed to the RTDyldMemoryManager, and other
421  /// sections are discarded. Passing 'true' to this method will cause
422  /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless
423  /// of whether they are "required to execute" in the usual sense.
424  ///
425  /// Rationale: Some MCJIT clients want to be able to inspect metadata
426  /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze
427  /// performance. Passing these sections to the memory manager allows the
428  /// client to make policy about the relevant sections, rather than having
429  /// MCJIT do it.
430  virtual void setProcessAllSections(bool ProcessAllSections) {
431  llvm_unreachable("No support for ProcessAllSections option");
432  }
433 
434  /// Return the target machine (if available).
435  virtual TargetMachine *getTargetMachine() { return nullptr; }
436 
437  /// DisableLazyCompilation - When lazy compilation is off (the default), the
438  /// JIT will eagerly compile every function reachable from the argument to
439  /// getPointerToFunction. If lazy compilation is turned on, the JIT will only
440  /// compile the one function and emit stubs to compile the rest when they're
441  /// first called. If lazy compilation is turned off again while some lazy
442  /// stubs are still around, and one of those stubs is called, the program will
443  /// abort.
444  ///
445  /// In order to safely compile lazily in a threaded program, the user must
446  /// ensure that 1) only one thread at a time can call any particular lazy
447  /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
448  /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
449  /// lazy stub. See http://llvm.org/PR5184 for details.
450  void DisableLazyCompilation(bool Disabled = true) {
451  CompilingLazily = !Disabled;
452  }
453  bool isCompilingLazily() const {
454  return CompilingLazily;
455  }
456 
457  /// DisableGVCompilation - If called, the JIT will abort if it's asked to
458  /// allocate space and populate a GlobalVariable that is not internal to
459  /// the module.
460  void DisableGVCompilation(bool Disabled = true) {
461  GVCompilationDisabled = Disabled;
462  }
463  bool isGVCompilationDisabled() const {
464  return GVCompilationDisabled;
465  }
466 
467  /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
468  /// symbols with dlsym. A client can still use InstallLazyFunctionCreator to
469  /// resolve symbols in a custom way.
470  void DisableSymbolSearching(bool Disabled = true) {
471  SymbolSearchingDisabled = Disabled;
472  }
474  return SymbolSearchingDisabled;
475  }
476 
477  /// Enable/Disable IR module verification.
478  ///
479  /// Note: Module verification is enabled by default in Debug builds, and
480  /// disabled by default in Release. Use this method to override the default.
482  VerifyModules = Verify;
483  }
484  bool getVerifyModules() const {
485  return VerifyModules;
486  }
487 
488  /// InstallLazyFunctionCreator - If an unknown function is needed, the
489  /// specified function pointer is invoked to create it. If it returns null,
490  /// the JIT will abort.
492  LazyFunctionCreator = std::move(C);
493  }
494 
495 protected:
496  ExecutionEngine(DataLayout DL) : DL(std::move(DL)) {}
497  explicit ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M);
498  explicit ExecutionEngine(std::unique_ptr<Module> M);
499 
500  void emitGlobals();
501 
502  void EmitGlobalVariable(const GlobalVariable *GV);
503 
505  void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
506  Type *Ty);
507 
508 private:
509  void Init(std::unique_ptr<Module> M);
510 };
511 
512 namespace EngineKind {
513 
514  // These are actually bitmasks that get or-ed together.
515  enum Kind {
516  JIT = 0x1,
518  };
519  const static Kind Either = (Kind)(JIT | Interpreter);
520 
521 } // end namespace EngineKind
522 
523 /// Builder class for ExecutionEngines. Use this by stack-allocating a builder,
524 /// chaining the various set* methods, and terminating it with a .create()
525 /// call.
527 private:
528  std::unique_ptr<Module> M;
529  EngineKind::Kind WhichEngine;
530  std::string *ErrorStr;
531  CodeGenOpt::Level OptLevel;
532  std::shared_ptr<MCJITMemoryManager> MemMgr;
533  std::shared_ptr<LegacyJITSymbolResolver> Resolver;
534  TargetOptions Options;
535  Optional<Reloc::Model> RelocModel;
537  std::string MArch;
538  std::string MCPU;
540  bool VerifyModules;
541  bool UseOrcMCJITReplacement;
542  bool EmulatedTLS = true;
543 
544 public:
545  /// Default constructor for EngineBuilder.
546  EngineBuilder();
547 
548  /// Constructor for EngineBuilder.
549  EngineBuilder(std::unique_ptr<Module> M);
550 
551  // Out-of-line since we don't have the def'n of RTDyldMemoryManager here.
552  ~EngineBuilder();
553 
554  /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
555  /// or whichever engine works. This option defaults to EngineKind::Either.
557  WhichEngine = w;
558  return *this;
559  }
560 
561  /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
562  /// clients to customize their memory allocation policies for the MCJIT. This
563  /// is only appropriate for the MCJIT; setting this and configuring the builder
564  /// to create anything other than MCJIT will cause a runtime error. If create()
565  /// is called and is successful, the created engine takes ownership of the
566  /// memory manager. This option defaults to NULL.
567  EngineBuilder &setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
568 
570  setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
571 
572  EngineBuilder &setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR);
573 
574  /// setErrorStr - Set the error string to write to on error. This option
575  /// defaults to NULL.
576  EngineBuilder &setErrorStr(std::string *e) {
577  ErrorStr = e;
578  return *this;
579  }
580 
581  /// setOptLevel - Set the optimization level for the JIT. This option
582  /// defaults to CodeGenOpt::Default.
584  OptLevel = l;
585  return *this;
586  }
587 
588  /// setTargetOptions - Set the target options that the ExecutionEngine
589  /// target is using. Defaults to TargetOptions().
591  Options = Opts;
592  return *this;
593  }
594 
595  /// setRelocationModel - Set the relocation model that the ExecutionEngine
596  /// target is using. Defaults to target specific default "Reloc::Default".
598  RelocModel = RM;
599  return *this;
600  }
601 
602  /// setCodeModel - Set the CodeModel that the ExecutionEngine target
603  /// data is using. Defaults to target specific default
604  /// "CodeModel::JITDefault".
606  CMModel = M;
607  return *this;
608  }
609 
610  /// setMArch - Override the architecture set by the Module's triple.
612  MArch.assign(march.begin(), march.end());
613  return *this;
614  }
615 
616  /// setMCPU - Target a specific cpu type.
618  MCPU.assign(mcpu.begin(), mcpu.end());
619  return *this;
620  }
621 
622  /// setVerifyModules - Set whether the JIT implementation should verify
623  /// IR modules during compilation.
625  VerifyModules = Verify;
626  return *this;
627  }
628 
629  /// setMAttrs - Set cpu-specific attributes.
630  template<typename StringSequence>
631  EngineBuilder &setMAttrs(const StringSequence &mattrs) {
632  MAttrs.clear();
633  MAttrs.append(mattrs.begin(), mattrs.end());
634  return *this;
635  }
636 
637  // Use OrcMCJITReplacement instead of MCJIT. Off by default.
638  void setUseOrcMCJITReplacement(bool UseOrcMCJITReplacement) {
639  this->UseOrcMCJITReplacement = UseOrcMCJITReplacement;
640  }
641 
642  void setEmulatedTLS(bool EmulatedTLS) {
643  this->EmulatedTLS = EmulatedTLS;
644  }
645 
646  TargetMachine *selectTarget();
647 
648  /// selectTarget - Pick a target either via -march or by guessing the native
649  /// arch. Add any CPU features specified via -mcpu or -mattr.
650  TargetMachine *selectTarget(const Triple &TargetTriple,
651  StringRef MArch,
652  StringRef MCPU,
653  const SmallVectorImpl<std::string>& MAttrs);
654 
656  return create(selectTarget());
657  }
658 
659  ExecutionEngine *create(TargetMachine *TM);
660 };
661 
662 // Create wrappers for C Binding types (see CBindingWrapping.h).
664 
665 } // end namespace llvm
666 
667 #endif // LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
uint64_t CallInst * C
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
Type
MessagePack types as defined in the standard, with the exception of Integer being divided into a sign...
Definition: MsgPackReader.h:49
virtual void * getOrEmitGlobalVariable(const GlobalVariable *GV)
getOrEmitGlobalVariable - Return the address of the specified global variable, possibly emitting it t...
This class represents lattice values for constants.
Definition: AllocatorList.h:24
struct LLVMOpaqueExecutionEngine * LLVMExecutionEngineRef
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:65
sys::Mutex lock
lock - This lock protects the ExecutionEngine and MCJIT classes.
JITEventListener - Abstract interface for use by the JIT to notify clients about significant events d...
virtual void setObjectCache(ObjectCache *)
Sets the pre-compiled object cache.
static bool getConstantValue(SDValue N, uint32_t &Out)
virtual void * getPointerToFunctionOrStub(Function *F)
getPointerToFunctionOrStub - If the specified function has been code-gen&#39;d, return a pointer to the f...
F(f)
const DataLayout & getDataLayout() const
virtual void RegisterJITEventListener(JITEventListener *)
Registers a listener to be called back on various events within the JIT.
EngineBuilder & setMArch(StringRef march)
setMArch - Override the architecture set by the Module&#39;s triple.
amdgpu Simplify well known AMD library false Value Value const Twine & Name
Definition: BitVector.h:938
#define DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ty, ref)
EngineBuilder & setVerifyModules(bool Verify)
setVerifyModules - Set whether the JIT implementation should verify IR modules during compilation...
virtual void addModule(std::unique_ptr< Module > M)
Add a Module to the list of modules that we can JIT from.
ppc ctr loops PowerPC CTR Loops Verify
std::function< void *(const std::string &)> FunctionCreator
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
virtual void finalizeObject()
finalizeObject - ensure the module is fully processed and is usable.
EngineBuilder & setCodeModel(CodeModel::Model M)
setCodeModel - Set the CodeModel that the ExecutionEngine target data is using.
bool isSymbolSearchingDisabled() const
bool isCompilingLazily() const
EngineBuilder & setEngineKind(EngineKind::Kind w)
setEngineKind - Controls whether the user wants the interpreter, the JIT, or whichever engine works...
virtual void generateCodeForModule(Module *M)
generateCodeForModule - Run code generation for the specified module and load it into memory...
void setUseOrcMCJITReplacement(bool UseOrcMCJITReplacement)
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
This is an important base class in LLVM.
Definition: Constant.h:42
EngineBuilder & setErrorStr(std::string *e)
setErrorStr - Set the error string to write to on error.
Interface for looking up the initializer for a variable name, used by Init::resolveReferences.
Definition: Record.h:1774
static const Kind Either
bool isGVCompilationDisabled() const
EngineBuilder & setMAttrs(const StringSequence &mattrs)
setMAttrs - Set cpu-specific attributes.
GlobalAddressMapTy & getGlobalAddressMap()
void InstallLazyFunctionCreator(FunctionCreator C)
InstallLazyFunctionCreator - If an unknown function is needed, the specified function pointer is invo...
bool getVerifyModules() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract interface for implementation execution of LLVM modules, designed to support both interpreter...
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
std::map< uint64_t, std::string > & getGlobalAddressReverseMap()
ExecutionEngine(DataLayout DL)
void DisableSymbolSearching(bool Disabled=true)
DisableSymbolSearching - If called, the JIT will not try to lookup unknown symbols with dlsym...
EngineBuilder & setRelocationModel(Reloc::Model RM)
setRelocationModel - Set the relocation model that the ExecutionEngine target is using.
EngineBuilder & setTargetOptions(const TargetOptions &Opts)
setTargetOptions - Set the target options that the ExecutionEngine target is using.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:847
Module.h This file contains the declarations for the Module class.
virtual void setProcessAllSections(bool ProcessAllSections)
setProcessAllSections (MCJIT Only): By default, only sections that are "required for execution" are p...
void setVerifyModules(bool Verify)
Enable/Disable IR module verification.
void DisableLazyCompilation(bool Disabled=true)
DisableLazyCompilation - When lazy compilation is off (the default), the JIT will eagerly compile eve...
SmallVector< std::unique_ptr< Module >, 1 > Modules
The list of Modules that we are JIT&#39;ing from.
iterator begin() const
Definition: StringRef.h:106
void append(in_iter in_start, in_iter in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:394
ExecutionEngine * create()
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
void setEmulatedTLS(bool EmulatedTLS)
This is the base ObjectCache type which can be provided to an ExecutionEngine for the purpose of avoi...
Definition: ObjectCache.h:23
Helper class for helping synchronize access to the global address map table.
Builder class for ExecutionEngines.
virtual void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress)
mapSectionAddress - map a section to its target address space value.
virtual TargetMachine * getTargetMachine()
Return the target machine (if available).
FunctionCreator LazyFunctionCreator
LazyFunctionCreator - If an unknown function is needed, this function pointer is invoked to create it...
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:59
void DisableGVCompilation(bool Disabled=true)
DisableGVCompilation - If called, the JIT will abort if it&#39;s asked to allocate space and populate a G...
virtual uint64_t getFunctionAddress(const std::string &Name)
getFunctionAddress - Return the address of the specified function.
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
virtual void UnregisterJITEventListener(JITEventListener *)
virtual uint64_t getGlobalValueAddress(const std::string &Name)
getGlobalValueAddress - Return the address of the specified global value.
iterator end() const
Definition: StringRef.h:108
EngineBuilder & setOptLevel(CodeGenOpt::Level l)
setOptLevel - Set the optimization level for the JIT.
EngineBuilder & setMCPU(StringRef mcpu)
setMCPU - Target a specific cpu type.