LLVM  8.0.1
SparseMultiSet.h
Go to the documentation of this file.
1 //===- llvm/ADT/SparseMultiSet.h - Sparse multiset --------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the SparseMultiSet class, which adds multiset behavior to
11 // the SparseSet.
12 //
13 // A sparse multiset holds a small number of objects identified by integer keys
14 // from a moderately sized universe. The sparse multiset uses more memory than
15 // other containers in order to provide faster operations. Any key can map to
16 // multiple values. A SparseMultiSetNode class is provided, which serves as a
17 // convenient base class for the contents of a SparseMultiSet.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #ifndef LLVM_ADT_SPARSEMULTISET_H
22 #define LLVM_ADT_SPARSEMULTISET_H
23 
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/SparseSet.h"
27 #include <cassert>
28 #include <cstdint>
29 #include <cstdlib>
30 #include <iterator>
31 #include <limits>
32 #include <utility>
33 
34 namespace llvm {
35 
36 /// Fast multiset implementation for objects that can be identified by small
37 /// unsigned keys.
38 ///
39 /// SparseMultiSet allocates memory proportional to the size of the key
40 /// universe, so it is not recommended for building composite data structures.
41 /// It is useful for algorithms that require a single set with fast operations.
42 ///
43 /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
44 /// fast clear() as fast as a vector. The find(), insert(), and erase()
45 /// operations are all constant time, and typically faster than a hash table.
46 /// The iteration order doesn't depend on numerical key values, it only depends
47 /// on the order of insert() and erase() operations. Iteration order is the
48 /// insertion order. Iteration is only provided over elements of equivalent
49 /// keys, but iterators are bidirectional.
50 ///
51 /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
52 /// offers constant-time clear() and size() operations as well as fast iteration
53 /// independent on the size of the universe.
54 ///
55 /// SparseMultiSet contains a dense vector holding all the objects and a sparse
56 /// array holding indexes into the dense vector. Most of the memory is used by
57 /// the sparse array which is the size of the key universe. The SparseT template
58 /// parameter provides a space/speed tradeoff for sets holding many elements.
59 ///
60 /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
61 /// sparse array uses 4 x Universe bytes.
62 ///
63 /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
64 /// lines, but the sparse array is 4x smaller. N is the number of elements in
65 /// the set.
66 ///
67 /// For sets that may grow to thousands of elements, SparseT should be set to
68 /// uint16_t or uint32_t.
69 ///
70 /// Multiset behavior is provided by providing doubly linked lists for values
71 /// that are inlined in the dense vector. SparseMultiSet is a good choice when
72 /// one desires a growable number of entries per key, as it will retain the
73 /// SparseSet algorithmic properties despite being growable. Thus, it is often a
74 /// better choice than a SparseSet of growable containers or a vector of
75 /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
76 /// the iterators don't point to the element erased), allowing for more
77 /// intuitive and fast removal.
78 ///
79 /// @tparam ValueT The type of objects in the set.
80 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
81 /// @tparam SparseT An unsigned integer type. See above.
82 ///
83 template<typename ValueT,
84  typename KeyFunctorT = identity<unsigned>,
85  typename SparseT = uint8_t>
87  static_assert(std::numeric_limits<SparseT>::is_integer &&
88  !std::numeric_limits<SparseT>::is_signed,
89  "SparseT must be an unsigned integer type");
90 
91  /// The actual data that's stored, as a doubly-linked list implemented via
92  /// indices into the DenseVector. The doubly linked list is implemented
93  /// circular in Prev indices, and INVALID-terminated in Next indices. This
94  /// provides efficient access to list tails. These nodes can also be
95  /// tombstones, in which case they are actually nodes in a single-linked
96  /// freelist of recyclable slots.
97  struct SMSNode {
98  static const unsigned INVALID = ~0U;
99 
100  ValueT Data;
101  unsigned Prev;
102  unsigned Next;
103 
104  SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) {}
105 
106  /// List tails have invalid Nexts.
107  bool isTail() const {
108  return Next == INVALID;
109  }
110 
111  /// Whether this node is a tombstone node, and thus is in our freelist.
112  bool isTombstone() const {
113  return Prev == INVALID;
114  }
115 
116  /// Since the list is circular in Prev, all non-tombstone nodes have a valid
117  /// Prev.
118  bool isValid() const { return Prev != INVALID; }
119  };
120 
121  using KeyT = typename KeyFunctorT::argument_type;
123  DenseT Dense;
124  SparseT *Sparse = nullptr;
125  unsigned Universe = 0;
126  KeyFunctorT KeyIndexOf;
128 
129  /// We have a built-in recycler for reusing tombstone slots. This recycler
130  /// puts a singly-linked free list into tombstone slots, allowing us quick
131  /// erasure, iterator preservation, and dense size.
132  unsigned FreelistIdx = SMSNode::INVALID;
133  unsigned NumFree = 0;
134 
135  unsigned sparseIndex(const ValueT &Val) const {
136  assert(ValIndexOf(Val) < Universe &&
137  "Invalid key in set. Did object mutate?");
138  return ValIndexOf(Val);
139  }
140  unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
141 
142  /// Whether the given entry is the head of the list. List heads's previous
143  /// pointers are to the tail of the list, allowing for efficient access to the
144  /// list tail. D must be a valid entry node.
145  bool isHead(const SMSNode &D) const {
146  assert(D.isValid() && "Invalid node for head");
147  return Dense[D.Prev].isTail();
148  }
149 
150  /// Whether the given entry is a singleton entry, i.e. the only entry with
151  /// that key.
152  bool isSingleton(const SMSNode &N) const {
153  assert(N.isValid() && "Invalid node for singleton");
154  // Is N its own predecessor?
155  return &Dense[N.Prev] == &N;
156  }
157 
158  /// Add in the given SMSNode. Uses a free entry in our freelist if
159  /// available. Returns the index of the added node.
160  unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
161  if (NumFree == 0) {
162  Dense.push_back(SMSNode(V, Prev, Next));
163  return Dense.size() - 1;
164  }
165 
166  // Peel off a free slot
167  unsigned Idx = FreelistIdx;
168  unsigned NextFree = Dense[Idx].Next;
169  assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
170 
171  Dense[Idx] = SMSNode(V, Prev, Next);
172  FreelistIdx = NextFree;
173  --NumFree;
174  return Idx;
175  }
176 
177  /// Make the current index a new tombstone. Pushes it onto the freelist.
178  void makeTombstone(unsigned Idx) {
179  Dense[Idx].Prev = SMSNode::INVALID;
180  Dense[Idx].Next = FreelistIdx;
181  FreelistIdx = Idx;
182  ++NumFree;
183  }
184 
185 public:
187  using reference = ValueT &;
188  using const_reference = const ValueT &;
189  using pointer = ValueT *;
190  using const_pointer = const ValueT *;
192 
193  SparseMultiSet() = default;
194  SparseMultiSet(const SparseMultiSet &) = delete;
195  SparseMultiSet &operator=(const SparseMultiSet &) = delete;
196  ~SparseMultiSet() { free(Sparse); }
197 
198  /// Set the universe size which determines the largest key the set can hold.
199  /// The universe must be sized before any elements can be added.
200  ///
201  /// @param U Universe size. All object keys must be less than U.
202  ///
203  void setUniverse(unsigned U) {
204  // It's not hard to resize the universe on a non-empty set, but it doesn't
205  // seem like a likely use case, so we can add that code when we need it.
206  assert(empty() && "Can only resize universe on an empty map");
207  // Hysteresis prevents needless reallocations.
208  if (U >= Universe/4 && U <= Universe)
209  return;
210  free(Sparse);
211  // The Sparse array doesn't actually need to be initialized, so malloc
212  // would be enough here, but that will cause tools like valgrind to
213  // complain about branching on uninitialized data.
214  Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT)));
215  Universe = U;
216  }
217 
218  /// Our iterators are iterators over the collection of objects that share a
219  /// key.
220  template<typename SMSPtrTy>
221  class iterator_base : public std::iterator<std::bidirectional_iterator_tag,
222  ValueT> {
223  friend class SparseMultiSet;
224 
225  SMSPtrTy SMS;
226  unsigned Idx;
227  unsigned SparseIdx;
228 
229  iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
230  : SMS(P), Idx(I), SparseIdx(SI) {}
231 
232  /// Whether our iterator has fallen outside our dense vector.
233  bool isEnd() const {
234  if (Idx == SMSNode::INVALID)
235  return true;
236 
237  assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
238  return false;
239  }
240 
241  /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
242  bool isKeyed() const { return SparseIdx < SMS->Universe; }
243 
244  unsigned Prev() const { return SMS->Dense[Idx].Prev; }
245  unsigned Next() const { return SMS->Dense[Idx].Next; }
246 
247  void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
248  void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
249 
250  public:
251  using super = std::iterator<std::bidirectional_iterator_tag, ValueT>;
252  using value_type = typename super::value_type;
253  using difference_type = typename super::difference_type;
254  using pointer = typename super::pointer;
255  using reference = typename super::reference;
256 
258  assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
259  "Dereferencing iterator of invalid key or index");
260 
261  return SMS->Dense[Idx].Data;
262  }
263  pointer operator->() const { return &operator*(); }
264 
265  /// Comparison operators
266  bool operator==(const iterator_base &RHS) const {
267  // end compares equal
268  if (SMS == RHS.SMS && Idx == RHS.Idx) {
269  assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
270  "Same dense entry, but different keys?");
271  return true;
272  }
273 
274  return false;
275  }
276 
277  bool operator!=(const iterator_base &RHS) const {
278  return !operator==(RHS);
279  }
280 
281  /// Increment and decrement operators
282  iterator_base &operator--() { // predecrement - Back up
283  assert(isKeyed() && "Decrementing an invalid iterator");
284  assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
285  "Decrementing head of list");
286 
287  // If we're at the end, then issue a new find()
288  if (isEnd())
289  Idx = SMS->findIndex(SparseIdx).Prev();
290  else
291  Idx = Prev();
292 
293  return *this;
294  }
295  iterator_base &operator++() { // preincrement - Advance
296  assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
297  Idx = Next();
298  return *this;
299  }
300  iterator_base operator--(int) { // postdecrement
301  iterator_base I(*this);
302  --*this;
303  return I;
304  }
305  iterator_base operator++(int) { // postincrement
306  iterator_base I(*this);
307  ++*this;
308  return I;
309  }
310  };
311 
312  using iterator = iterator_base<SparseMultiSet *>;
313  using const_iterator = iterator_base<const SparseMultiSet *>;
314 
315  // Convenience types
316  using RangePair = std::pair<iterator, iterator>;
317 
318  /// Returns an iterator past this container. Note that such an iterator cannot
319  /// be decremented, but will compare equal to other end iterators.
320  iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
321  const_iterator end() const {
322  return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
323  }
324 
325  /// Returns true if the set is empty.
326  ///
327  /// This is not the same as BitVector::empty().
328  ///
329  bool empty() const { return size() == 0; }
330 
331  /// Returns the number of elements in the set.
332  ///
333  /// This is not the same as BitVector::size() which returns the size of the
334  /// universe.
335  ///
336  size_type size() const {
337  assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
338  return Dense.size() - NumFree;
339  }
340 
341  /// Clears the set. This is a very fast constant time operation.
342  ///
343  void clear() {
344  // Sparse does not need to be cleared, see find().
345  Dense.clear();
346  NumFree = 0;
347  FreelistIdx = SMSNode::INVALID;
348  }
349 
350  /// Find an element by its index.
351  ///
352  /// @param Idx A valid index to find.
353  /// @returns An iterator to the element identified by key, or end().
354  ///
355  iterator findIndex(unsigned Idx) {
356  assert(Idx < Universe && "Key out of range");
357  const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
358  for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
359  const unsigned FoundIdx = sparseIndex(Dense[i]);
360  // Check that we're pointing at the correct entry and that it is the head
361  // of a valid list.
362  if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
363  return iterator(this, i, Idx);
364  // Stride is 0 when SparseT >= unsigned. We don't need to loop.
365  if (!Stride)
366  break;
367  }
368  return end();
369  }
370 
371  /// Find an element by its key.
372  ///
373  /// @param Key A valid key to find.
374  /// @returns An iterator to the element identified by key, or end().
375  ///
376  iterator find(const KeyT &Key) {
377  return findIndex(KeyIndexOf(Key));
378  }
379 
380  const_iterator find(const KeyT &Key) const {
381  iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
382  return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
383  }
384 
385  /// Returns the number of elements identified by Key. This will be linear in
386  /// the number of elements of that key.
387  size_type count(const KeyT &Key) const {
388  unsigned Ret = 0;
389  for (const_iterator It = find(Key); It != end(); ++It)
390  ++Ret;
391 
392  return Ret;
393  }
394 
395  /// Returns true if this set contains an element identified by Key.
396  bool contains(const KeyT &Key) const {
397  return find(Key) != end();
398  }
399 
400  /// Return the head and tail of the subset's list, otherwise returns end().
401  iterator getHead(const KeyT &Key) { return find(Key); }
402  iterator getTail(const KeyT &Key) {
403  iterator I = find(Key);
404  if (I != end())
405  I = iterator(this, I.Prev(), KeyIndexOf(Key));
406  return I;
407  }
408 
409  /// The bounds of the range of items sharing Key K. First member is the head
410  /// of the list, and the second member is a decrementable end iterator for
411  /// that key.
412  RangePair equal_range(const KeyT &K) {
413  iterator B = find(K);
414  iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
415  return make_pair(B, E);
416  }
417 
418  /// Insert a new element at the tail of the subset list. Returns an iterator
419  /// to the newly added entry.
420  iterator insert(const ValueT &Val) {
421  unsigned Idx = sparseIndex(Val);
422  iterator I = findIndex(Idx);
423 
424  unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
425 
426  if (I == end()) {
427  // Make a singleton list
428  Sparse[Idx] = NodeIdx;
429  Dense[NodeIdx].Prev = NodeIdx;
430  return iterator(this, NodeIdx, Idx);
431  }
432 
433  // Stick it at the end.
434  unsigned HeadIdx = I.Idx;
435  unsigned TailIdx = I.Prev();
436  Dense[TailIdx].Next = NodeIdx;
437  Dense[HeadIdx].Prev = NodeIdx;
438  Dense[NodeIdx].Prev = TailIdx;
439 
440  return iterator(this, NodeIdx, Idx);
441  }
442 
443  /// Erases an existing element identified by a valid iterator.
444  ///
445  /// This invalidates iterators pointing at the same entry, but erase() returns
446  /// an iterator pointing to the next element in the subset's list. This makes
447  /// it possible to erase selected elements while iterating over the subset:
448  ///
449  /// tie(I, E) = Set.equal_range(Key);
450  /// while (I != E)
451  /// if (test(*I))
452  /// I = Set.erase(I);
453  /// else
454  /// ++I;
455  ///
456  /// Note that if the last element in the subset list is erased, this will
457  /// return an end iterator which can be decremented to get the new tail (if it
458  /// exists):
459  ///
460  /// tie(B, I) = Set.equal_range(Key);
461  /// for (bool isBegin = B == I; !isBegin; /* empty */) {
462  /// isBegin = (--I) == B;
463  /// if (test(I))
464  /// break;
465  /// I = erase(I);
466  /// }
468  assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
469  "erasing invalid/end/tombstone iterator");
470 
471  // First, unlink the node from its list. Then swap the node out with the
472  // dense vector's last entry
473  iterator NextI = unlink(Dense[I.Idx]);
474 
475  // Put in a tombstone.
476  makeTombstone(I.Idx);
477 
478  return NextI;
479  }
480 
481  /// Erase all elements with the given key. This invalidates all
482  /// iterators of that key.
483  void eraseAll(const KeyT &K) {
484  for (iterator I = find(K); I != end(); /* empty */)
485  I = erase(I);
486  }
487 
488 private:
489  /// Unlink the node from its list. Returns the next node in the list.
490  iterator unlink(const SMSNode &N) {
491  if (isSingleton(N)) {
492  // Singleton is already unlinked
493  assert(N.Next == SMSNode::INVALID && "Singleton has next?");
494  return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
495  }
496 
497  if (isHead(N)) {
498  // If we're the head, then update the sparse array and our next.
499  Sparse[sparseIndex(N)] = N.Next;
500  Dense[N.Next].Prev = N.Prev;
501  return iterator(this, N.Next, ValIndexOf(N.Data));
502  }
503 
504  if (N.isTail()) {
505  // If we're the tail, then update our head and our previous.
506  findIndex(sparseIndex(N)).setPrev(N.Prev);
507  Dense[N.Prev].Next = N.Next;
508 
509  // Give back an end iterator that can be decremented
510  iterator I(this, N.Prev, ValIndexOf(N.Data));
511  return ++I;
512  }
513 
514  // Otherwise, just drop us
515  Dense[N.Next].Prev = N.Prev;
516  Dense[N.Prev].Next = N.Next;
517  return iterator(this, N.Next, ValIndexOf(N.Data));
518  }
519 };
520 
521 } // end namespace llvm
522 
523 #endif // LLVM_ADT_SPARSEMULTISET_H
iterator end()
Returns an iterator past this container.
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
iterator insert(const ValueT &Val)
Insert a new element at the tail of the subset list.
This class represents lattice values for constants.
Definition: AllocatorList.h:24
SparseMultiSet & operator=(const SparseMultiSet &)=delete
typename super::difference_type difference_type
bool contains(const KeyT &Key) const
Returns true if this set contains an element identified by Key.
size_type count(const KeyT &Key) const
Returns the number of elements identified by Key.
void push_back(const T &Elt)
Definition: SmallVector.h:218
iterator_base & operator--()
Increment and decrement operators.
std::iterator< std::bidirectional_iterator_tag, ValueT > super
bool operator==(const iterator_base &RHS) const
Comparison operators.
const_iterator find(const KeyT &Key) const
RangePair equal_range(const KeyT &K)
The bounds of the range of items sharing Key K.
size_type size() const
Returns the number of elements in the set.
iterator getHead(const KeyT &Key)
Return the head and tail of the subset&#39;s list, otherwise returns end().
An individual mapping from virtual register number to SUnit.
typename super::pointer pointer
iterator getTail(const KeyT &Key)
APInt operator*(APInt a, uint64_t RHS)
Definition: APInt.h:2091
typename super::reference reference
Key
PAL metadata keys.
bool operator!=(const iterator_base &RHS) const
#define P(N)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
iterator_base< const SparseMultiSet *> const_iterator
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
void setUniverse(unsigned U)
Set the universe size which determines the largest key the set can hold.
void clear()
Clears the set.
size_t size() const
Definition: SmallVector.h:53
iterator find(const KeyT &Key)
Find an element by its key.
void eraseAll(const KeyT &K)
Erase all elements with the given key.
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
iterator findIndex(unsigned Idx)
Find an element by its index.
typename super::value_type value_type
**iterator erase(iterator I)
SparseSetValFunctor - Helper class for selecting SparseSetValTraits.
Definition: SparseSet.h:68
#define N
bool empty() const
Returns true if the set is empty.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Fast multiset implementation for objects that can be identified by small unsigned keys...
LLVM_ATTRIBUTE_RETURNS_NONNULL void * safe_calloc(size_t Count, size_t Sz)
Definition: MemAlloc.h:33
Our iterators are iterators over the collection of objects that share a key.
bool operator==(uint64_t V1, const APInt &V2)
Definition: APInt.h:1967
SparseMultiSet()=default
const_iterator end() const